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Keynote Speech 01: Educational Model for Cultivating Digital
Talent in Cambodia: A CADT Case Study

Cambodia’s National Artificial Intelligence Strategy 2025-2030
sets a clear direction for the nation’s Al future — one that
emphasizes responsible innovation, inclusive growth, and col-
laboration across government, academia, and industry. Yet,
realizing this vision depends on the ability of researchers to
connect their scientific pursuits with the country’s strategic
needs.

This keynote highlights how research institutions and
innovators can align their AI efforts with the six national
strategic priorities — from human resource development and
data ecosystems to digital government, sectoral applications,
and ethical Al It explores practical ways for researchers to
translate ideas into deployable solutions, contribute to na-
tional datasets and models, and engage in cross-sector part-
nerships that bridge research and policy.

Drawing from Cambodia’s leadership role in ASEAN’s
AT governance and ongoing regional collaborations, the
talk invites the research community to pursue “research
with purpose” — research that not only advances al-
gorithms and publications, but also strengthens Cambo-
dia’s digital sovereignty, resilience, and inclusive develop-
ment.

Dr. Sovann En, Director of
Department of Digital Government
Transformation

Keynote Speech 02: Towards Responsible and Inclusive Al
China’s Exploration in Multimodal

This address delineates China’s commitment to fostering re-
sponsible and inclusive artificial intelligence, focusing on the

Dr. Yuerui Feng, Engineer of China
Academy of Information and
Communications Technology

iii

transformative potential of multimodal large language mod-
els. It explores the global evolution of Al towards greater
reasoning and autonomy, spotlighting key trends such as the
shift in computing demand, the critical role of high-quality
data, and the rise of open-source ecosystems and founda-
tion super models. The presentation further highlights the
instrumental role of the China Academy of Information and
Communications Technology (CAICT) in benchmarking and
ethical standardization, and introduces the China—ASEAN
AT Industry Innovation Center as a cornerstone for regional
collaboration. Through these initiatives, China aims to pro-
mote an open, cooperative, and sustainable global Al ecosys-
tem for shared benefits.



Keynote Speech 03: Human Perception in the Age of
Intelligent Systems: Accessible Design and Inclusive Innovation

Dr. Kyle Keane is a blind multidisciplinary researcher at
the intersection of artificial intelligence, human perception,
and inclusive design. Currently Senior Lecturer in Assistive
Technology in the School of Computer Science at the Uni-
versity of Bristol, Kyle draws from over a decade of teach-
ing and program development experience at MIT to explore
multisensory interaction and engagement with complex in-
formation. Dr. Keane’s technical contributions include de-
veloping neural network systems for automatic production
of audio-tactile graphics optimized for human perceptual in-
terpretability, with publications spanning cognitive science,
quantum physics, perception science, and assistive technol-
ogy engineering. Dr. Keane coordinates global assistive tech-
nology initiatives that fundamentally restructure how tech-
nologies are developed with and for disabled communities,
centering self-determination and knowledge sovereignty for
disabled communities.

Dr. Keane is a founding member of an international co-
design network linking the Cambodian Academy of Digital
Technologies, Penn State University, MIT, and the Univer-
sity of Bristol, where the experiences and priority needs of refugees and conflict-displaced people with
disabilities directly inform collaborative prototyping and development cycles. This approach explicitly
rejects extractive research methodologies, instead ensuring that communities with disabilities retain own-
ership of both problem identification and solution development. Through an inclusive model of assistive
technology innovation, this reciprocal exchange of knowledge and value ensures that engineering solutions
are driven by user needs, aligned with local expertise, and informed by lived experiences.

In this talk, Dr. Keane will explore the intricacies of human spatial perception, focusing on auditory
and haptic localization through innovative multi-speaker arrays and multi-channel haptic systems. He
will also discuss his efforts in building a global network of makerspaces and hackathons that promote
assistive technology through community-led, sustainable innovation. This keynote will highlight how
understanding and designing for ‘the world at a distance’ can transform our interactions with our envi-
ronments, each other, and ourselves.

Dr. Kyle Keane, Senior Lecturer in
Assistive Technology in School of
Computer Science at University of

Bristol
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Keynote Speech 04: The Wrestling Between Public Health and
Privacy: The Draft National Health Insurance Data
Management Act in Taiwan

Ms. Rosalind Liu, Project Manager at
Open Culture Foundation

Taiwan started implementing the National Health Insurance
(NHI) program in 1995. The program covers nearly 99.9% of
Taiwan’s population of approximately 23 million people and
its database contains detailed healthcare utilization records,
including demographic information, diagnosis codes, medical
procedures, medications, and healthcare expenditures, span-
ning over two decades.

Undoubtedly, the National Health Insurance Database
(NHID) is one of the world’s most comprehensive health
claims databases and presents high research value. It be-
came a crucial resource for epidemiological research, health
services research, drug safety monitoring, and health policy
evaluation until the Constitutional Court mandated privacy
protections enhancement in 2022.

According to the judgement, the administration agency
was required to amend the National Health Insurance Act
or other relevant laws, or enact a dedicated law to explic-
itly stipulate the matter before August in 2025. The Draft

National Health Insurance Data Management Act was submitted by the Executive Yuan in May. Unfor-
tunately, the legislation process is still pending due to the struggle between public health and personal

privacy.

In this session, the speaker will introduce the current arguments on the Draft NHID Management
Act in Taiwan and also share about the latest revision of Taiwan’s Personal Data Protection Act, which

happened on Nov 4th, 2025.

Keynote Speech 05: Data Governance in Fintech — Legal
Challenges and Opportunities

The rapid growth of ASEAN’s FinTech sector, poised to un-
derpin a projected $2 trillion digital economy, is critically
dependent on robust data governance. This presentation ex-
amines the pivotal legal challenges and opportunities shaping
this landscape. It identifies a fragmented regulatory patch-
work across member states, a significant trust deficit stem-
ming from cybersecurity threats, and operational complexi-
ties as major barriers to regional expansion and innovation.
These challenges increase compliance costs and hinder the
effectiveness of data-driven services like Al-powered credit
scoring.

Conversely, the presentation proposes a forward-looking
framework for turning data governance into a competitive
advantage. Key solutions include leveraging the ASEAN
Digital Economy Framework Agreement (DEFA) to harmo-
nize standards, promoting innovation-first approaches like
regulatory sandboxes, and treating data as a shared as-
set through open finance. By advocating for policy agility,
strategic investment in trust, and regional unity, the presen-

Mr. Teck Kheong Looi, Principal
Consultant (ASEAN), Public Policy Asia
Advisors

tation argues that effective data governance is not a barrier but the essential foundation for building a
secure, inclusive, and globally trusted FinTech ecosystem in ASEAN.
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Towards Explainable Khmer Polarity Classification

Marry Kong' Rina Buoy'

Sovisal Chenda'

Nguonly Taing'

fTecho Startup Center, Cambodia
Corresponding author: rina.buoy@techostartup.center

Abstract

Khmer polarity classification is a fundamen-
tal natural language processing task that as-
signs a positive, negative, or neutral label to
a given Khmer text input. Existing Khmer
models typically predict the label without
explaining the rationale behind the predic-
tion. This paper proposes an explainable
Khmer polarity classifier by fine-tuning an
instruction-based reasoning Qwen-3 model.
The notion of explainability in this paper
is limited to self-explanations, which the
model uses to rationalize its predictions. Ex-
perimental results show that the fine-tuned
model not only predicts labels accurately
but also provides reasoning by identifying
polarity-related keywords or phrases to sup-
port its predictions. In addition, we con-
tribute a new Khmer polarity dataset con-
sisting of short- to medium-length casual,
romanized, and mixed-code Khmer expres-
sions. This dataset was constructed using
both heuristic rules and human curation and
is publicly available through a gated Hug-
ging Face repository!. The fine-tuned Qwen-
3 models are also made available in the same
Hugging Face account.

Keywords: Polarity Classification, Fx-
plainability, LLM, Khmer Dataset.

1 Introduction

Polarity classification is a classical natural
language processing task that assigns a dis-
crete label to a given input text, typically
from the set positive, negative, or neutral [1].
It is also commonly referred to as sentiment
analysis. Fundamentally, polarity classifi-
cation is a specific instance of general text
classification or categorization, where the as-
signed label reflects sentiment [2]. Other
examples of text classification tasks include

Lrinabuoy /khmerpolarity__nonreasoning

spam detection, language identification, and
authorship attribution [2].

Although Khmer is a low-resource lan-
guage, the task of Khmer text classification
has been relatively well studied. Various ap-
proaches, using both classical machine learn-
ing and deep learning, have been proposed
for Khmer text classification. Similarly, sev-
eral methods [1; 3; 4; 5; 6] for Khmer sen-
timent and polarity classification have been
developed to assign sentiment labels to given
Khmer text inputs. However, all of these
methods are essentially black boxes, provid-
ing only the final label without any justifica-
tion or explanation for the prediction. Un-
derstanding the model’s reasoning is one of
fundamental aspects of model explainability.
It should be noted that the notion of ex-
plainability in this paper is limited to self-
explanations, which the model uses to ratio-
nalize its predictions.

Thus, this paper proposes an explain-
able Khmer polarity classifier that not only
predicts labels accurately but also pro-
vides justification or reasoning for its pre-
dictions. This is achieved by fine-tuning
an instruction-based reasoning Qwen-3 [7]
model. Experimental results demonstrate
that the fine-tuned model delivers both accu-
rate labels and coherent reasoning. Further-
more, to address the existing dataset gap,
we introduce a new casual Khmer polarity
dataset constructed through a combination
of heuristic rules and human curation. The
dataset comprises short- to medium-length
casual, romanized, and mixed-code Khmer
expressions. To the best of our knowledge,
this is the first Khmer dataset of its kind.
Our contributions are as follows:

1. We propose the first explainable Khmer
polarity classifier that not only predicts
labels accurately but also provides justi-
fication or reasoning for its predictions.



2. We contribute a new Khmer polarity
dataset consisting of short- to medium-
length casual, romanized, and mixed-
code Khmer expressions.

3. We make the resulting fine-tuned mod-
els publicly available to the community.

2 Related Work
2.1 Khmer Text Classification

Khmer is classified as a low-resource lan-
guage due to limited research attention and
the scarcity of datasets available for train-
ing and evaluation. Nonetheless, the task
of Khmer text classification has been rel-
atively well explored. ~Phann et al. [3]
studied the classification of local news into
nine categories using a range of classical
machine learning methods, such as logis-
tic regression, Naive Bayes, and support
vector machine (SVM) with term-frequency
inverse document-frequency (TF-IDF) fea-
tures. The SVM model with an radial
basis function (RBF) kernel achieved the
best performance. Jiang et al. [8] em-
ployed pretrained Khmer language models,
including BERT [9] and ELECTRA [10], for
Khmer news classification, reporting a top
accuracy of 70.6% across eight news cat-
egories. Rifat and Imran [5] proposed a
similar pretraining and fine-tuning approach
using BERT for both sentiment and news
classification, significantly outperforming the
baseline FastText-based model. Similarly,
Buoy et al. [4] utilized pretrained word em-
beddings (FastText) together with neural ar-
chitectures such as recurrent neural networks
(RNNs) and convolutional neural networks
(CNNs) for Khmer text classification. Com-
pared with a baseline pipeline using TF-IDF
features and an SVM classifier, their models
achieved improved accuracies on both multi-
class and multilabel classification tasks.

In the area of sentiment detection, Prom
et al. [6] proposed a method that combines
BERT-based contextual features with a bidi-
rectional long short-term memory (BiLSTM)
classifier. Their approach achieved an ac-
curacy of 86%, outperforming traditional
machine learning algorithms in classifying
Khmer text sentiments into negative, neu-
tral, and positive categories. Similarly, Ye

et al. [1] constructed a new Khmer polar-
ity dataset and experimented with a range
of classical machine learning techniques and
text feature extractors.

2.2 Prompt-Based Sentiment
Classification

Instruction-tuned large language models can
be prompted to perform sentiment classifi-
cation using zero-shot or few-shot prompt-
ing techniques, without the need for fine-
tuning or gradient updates [11]. Nonetheless,
for low-resource languages such as Khmer,
their performance often suffers from halluci-
nation and does not consistently align with
user expectations. A prompt-based polarity
detection was proposed for Czech language,
using both zero-shot and few-shot prompt-
ing techniques [12]. The authors highlighted
that the prompt-based method outperformed
traditional finetuning especially on a lim-
ited training dataset. Also, the authors sug-
gested that additional pretraining on target
domain can enhance performance in a zero-
shot prompting case.

2.3 Parameter-Efficient Fine-tuning

Fine-tuning a large model such as Qwen-
3 by updating all parameters requires a
substantial memory footprint. To ad-
dress this, parameter-efficient fine-tuning ap-
proaches are recommended, especially in
resource-constrained environments (e.g., a
single GPU). Among these, the low-rank
adaptation (LoRA) method [13] is one of
the most widely used. LoRA approximates
linear layer matrices with low-rank matrices
containing fewer trainable parameters. In-
stead of updating all parameters, LoRA in-
jects only trainable low-rank updates, reduc-
ing the number of trainable parameters by
approximately 90% while maintaining per-
formance. QLoRA [14] further reduces mem-
ory usage by using 4-bit quantized pretrained
models.

3 Proposed Solution

This paper proposes an explainable Khmer
polarity classifier. In this context, explain-
able means that the classifier not only pre-
dicts labels accurately but also provides



justification or reasoning for its predic-
tions. This notion is also known as self-
explanation. This is achieved by fine-tuning
an instruction-tuned large language model
(LLM) with reasoning capability. For this
purpose, we adopted the instruction-tuned
Qwen3 models, which unify both a thinking
mode for complex tasks and a non-thinking
mode for simpler tasks within the same ar-
chitecture.  Due to resource constraints,
we experimented only with the Qwen3-1.7B,
Qwen3-4B, and Qwen3-8B variants, as these
models are multilingual and support the
Khmer language. Qwen-3 is the latest release
of the Qwen model family, including Qwen-
2 [15] and Qwen-2.5[16], with enhanced mul-
tilingual (Khmer included) instruction un-
derstanding and translation.

To fine-tune an instruction-tuned Qwen3
model into an explainable Khmer polarity
classifier, we design a prompt that activates
the model’s thinking mode by guiding it to
identify polarity-related keywords or phrases
before predicting the final polarity label.
These identified keywords or phrases serve
as the basis for explaining the model’s pre-
dictions. The reasoning prompt template
is shown in Figure 1. As illustrated, the
polarity-related keywords or phrases are en-
closed between <think> and </think> to-
kens, which trigger the model to use this in-
formation as reasoning prior to concluding
the final label during training.

When the polarity-related keywords or
phrases are not available, the thinking mode
is deactivated by applying the non-reasoning
prompt template, as shown in Figure 2. This
allows training to incorporate both datasets
that include explicit polarity cues and those
that do not, within the same model.

During inference, the thinking mode is al-
ways activated using the inference prompt
template (Figure 3). Consequently, the
model identifies any polarity-related key-
words or phrases as part of its reasoning pro-
cess before arriving at the final label. In this
way, the model’s predictions are inherently
self-explainable.

We apply LoRA fine-tuning to reduce
memory requirements. The LoRA configura-
tions are shown in Table 1, and the number of
LoRA trainable parameters, along with the

total model parameters for each Qwen3 vari-
ant, are presented in Table 2. As provided in
the table, the fine-tuning is limited to only
the self-attention and feed-forward layers.

Table 1. LoRA configurations.

Parameter Value

T 32

« 32
dropout 0

bias none
modules projection layers

Table 2. The LoRA trainable parameters.
Params: model parameters.

Model LoRA Params Full Params
Qwen3-1B 34M 1.7B
Qwen3-4B 66M 4B
Qwen3-8B 80M 8B

4 Datasets

4.1 Khmer Polarity (KP) Dataset

The dataset [1] comprises 10,000 manually
labeled Khmer text inputs collected from on-
line news articles. Each input is assigned
one of three possible polarity labels: positive,
negative, or neutral. The dataset is charac-
terized by relatively long text inputs written
in formal language. In addition, it includes
keywords or phrases associated with the final
label. However, the authors of this dataset
used only the input texts and labels to train
multiple Khmer polarity classifiers with var-
ious classical machine learning approaches,
such as k-nearest neighbors (kNN) and sup-
port vector machines (SVM), and text fea-
ture extractors. As a result, their trained
models lack explainability and justification.
A few training samples from this dataset are
shown in Table 3. For evaluation, the dataset
is split into training (9,000) and test (1,000)
sets.

4.2 Casual Khmer Polarity (CKP)
Dataset

To complement the above KP dataset, we
constructed a new casual Khmer polarity
dataset [17] of approximately 16,500 texts,



instruction = 'Classify the given text as positive, neutral, or negative:\n '

conversations.append([
{"role" : "user", "content" : instruction + {text}},
{"role" : "assistant", "content" : f'<think> Because the input texcontains the
following {reasoning} </think>\n'+ label},

i)

Figure 1. The reasoning prompt template for polarity classification. texrt: Khmer text input.
reasoning: any polarity-related keywords or phrases. label: negative, positive, or neutral.

instruction = 'Classify the given text as positive, neutral, or negative:\n
conversations.append([

{"role" : "user", "content" : instruction + {text}},

{"role" : "assistant", "content" : f'<think>\n\n</think>\n'+ label},

1

Figure 2. The non-reasoning prompt template for polarity classification. text: Khmer text
input. label: negative, positive, or neutral.

instruction = 'Classify the given text as positive, neutral, or negative:\n
conversations.append([
{"role" : "user", "content” : instruction + {text}},

{“role - =assistant= S =contents = cthink> )

D

Figure 3. The reasoning prompt template for polarity classification during inference. text:
Khmer text input.

Table 3. A few samples from the KP dataset, showing the Khmer text inputs, polarity-related
keywords or phrases, and labels.

Input Text Reasoning Label

wisiinmigumSieg)iminuuGyjs

Bdnmuie MW SN uH AR

(Any young woman who holds a book today

will become a good mother in the future.) mwing (good mother) positive

gainn B8AIGH UAMARNY

MoANUESnMSAIMUSUNwHg:

(For example, people who are deaf or hard of hearing

may not be able to hear what the police are saying.) AmaAANU/aAnuB8A (inaudible) negative

AMUAYMMSUmMeath

rﬂf{j;%nﬁaéﬁ}[m‘gammméhﬁjms;:slggnﬁ'éjﬁufm

mitgjnim ﬁfgms%ﬁmgwmjh

qu Sudaisiunigiatinme

(The Cambodian government has announced

that all casinos in the country will be allowed to

reopen, but only with slot machines and slot games.) {mey (announce) neutral




focusing on casual Khmer texts that are
often used on social media, such as Face-
book. These casual texts include Khmer, ro-
manized, and mix-coded expressions. Data
cleaning was applied by converting all En-
glish text to lowercase, removing punctu-
ation and irrelevant symbols, eliminating
emojis and special characters to reduce noise,
and correcting misspellings to handle infor-
mal or noisy language effectively. A heuris-
tic method first labeled comments automat-
ically using sentiment-related keywords, fol-
lowed by manual review and correction to en-
sure accuracy and handle misclassifications
caused by context or sarcasm. We adopted
the same labeling scheme (i.e., positive, neg-
ative, and neutral). Nonetheless, this dataset
does not provide any identified polarity key-
words or phrases. A few training samples
from this dataset is provided in Table 4. For
evaluation, this dataset is split into train
(14,850) and test (1,650) sets.

Thus, by leveraging the proposed reason-
ing and non-reasoning prompting templates
together with the KP dataset (with reason-
ing) and the CKP dataset (without reason-
ing), we fine-tune an explainable Khmer po-
larity classifier that can self-explain its pre-
dictions.

5 Experiments and Results

5.1 Experimental Setup

We used the Unsloth? fine-tuning framework,
which enables memory-efficient training and
inference on a single GPU. In all experi-
ments, training was conducted for two full
epochs on the combined data (i.e., KP and
CKP) using a linear learning rate schedule
with an initial rate of 2 x 10~* and a batch
size of eight. The maximum context length
was set to 2,048. Gradient accumulation was
set to four, resulting in an effective batch size
of 32 per gradient update. A weight decay of
0.01 was applied. We used instruction-tuned
4-bit quantized Qwen-3 model weights. For
computing resources, training was performed
on a single NVIDIA L4 GPU provided by
Google Colab.

Zhttps://unsloth.ai/

5.2 Results and Discussion

In this section, we present the experimental
results followed by key analyses. We begin
with a quantitative assessment using a stan-
dard classification accuracy metric, and then
provide a qualitative assessment of reasoning
and explainability.

5.2.1 Quantitative Assessment of
Classification

Table 5 presents an accuracy compari-
son between our fine-tuned Qwen-3 models
and existing classical machine learning meth-
ods on the KP dataset. As shown, our
fine-tuned models with the enabled think-
ing mode achieved an accuracy of 84%, com-
pared to 60% by the best-performing tuned
SGD model. The same table shows that the
default Qwen-3 models (i.e., without fine-
tuning) achieve an accuracy of 0% as they
are unable to sufficiently understand Khmer
language. As shown in the same table,
When the thinking mode was not enabled
(i.e., baseline), the model performance signif-
icantly degraded. In summary, the findings
highlight the robustness of our proposed fine-
tuned models.

However, on the CKP dataset in Table 6,
our fine-tuned models performed compara-
bly to existing deep learning—based models
(i.e., RNN and CNN). Specifically, our fine-
tuned Qwen-8B model achieved a classifi-
cation accuracy of 87%, compared to 88%
by the CNN model. The model’s slight
under-performance compared to the dedi-
cated CNN model is likely due to the fact
that fine-tuning was applied only to the
self-attention and feed-forward layers, while
the embedding layers, which lack sufficient
Khmer language understanding, were not up-
dated. Like on the KP dataset, the default
Qwen-3 models achieved an accuracy of 0%
and without the thinking mode (i.e., base-
line), the model performance significantly
degraded.

In summary, across both datasets, our pro-
posed fine-tuned models either outperformed
or achieved comparable performance to exist-
ing approaches. Moreover, our models pro-
vide reasoning and justification for their pre-
dictions (see next Section 5.2.2), a feature
absent in previous methods.



Table 4. A few samples from the CKP dataset, showing the Khmer text inputs, and labels.

Input Text Reasoning Label
gutsinfghmammmumsIF g i

( The food at his piace is delicious. I've been there once.) - positive
IR IS UG A IUTHS

(It’s time to watch again.) - neutral
HAR NN YIGHANALG T

(The people of Kampong Som cannot prepare it well.) - negative

Table 5. Assessment of classification accu-
racy on the KP dataset. bold: highest.
italic: second highest. Baseline: w/o think-
ing.

Model Accuracy
KNN (Bigram) [1] 0.48
Decision Tree [1] 0.54
Random Forest [1] 0.60
SVM [1] 0.59
SGD [1] 0.58
SGD Tuning [1] 0.60
Qwen-1.7B (w/o FT) 0.00
Qwen-4B (w/o FT) 0.00
Qwen-8B (w/o FT) 0.00
Qwen-1.7B (Baseline) 0.77
Qwen-4B (Baseline) 0.74
Qwen-8B (Baseline) 0.78
Qwen-1.7B (Ours) 0.84
Qwen-4B (Ours) 0.84
Qwen-8B (Ours) 0.84

5.2.2 Qualitative Assessment of
Reasoning and Explainability

In this section, we present a qualitative as-
sessment of the model’s reasoning and ex-
plainability. As described in Section 3, our
fine-tuned models are trained to identify
polarity-related keywords or phrases in the
input text before producing the final label
prediction. Table 7 provides some exam-
ple Khmer text inputs and English trans-
lations, the model’s derived polarity-related
key words or phrases, and the final labels.
The table shows that the model can not only
give the correct labels but also extracts some
polarity-related key words. These polarity-
related key words are the basis or reasoning
to understand or support why the model pre-
dicts what it predicts.

Table 6. Assessment of classification accu-
racy on the CKP dataset. bold: highest.
italic: second highest. Params : trainable
only. Baseline: w/o thinking. FT: fine-
tuning. FT: fine-tuning.

Model Params Accuracy
XGBoost [17] NA 0.85
RNN [17] 3.91M 0.87
CNN [17] 2.97M 0.88
Qwen-1.7B (w/o FT) oM 0.00
Qwen-4B (w/o FT) 0M 0.00
Qwen-8B (w/o FT) 0M 0.00
Qwen-1.7B (Baseline) 34M 0.81
Qwen-4B (Baseline) 66M 0.85
Qwen-8B (Baseline) 80M 0.82
Qwen-1.7B (Ours) 34M 0.83
Qwen-4B (Ours) 66M 0.86
Qwen-8B (Ours) 80M 0.87

6 Future Work

Future work should include the following
tasks:

1. The fine-tuning experiments were lim-
ited to the Qwen-3 model family only.
Thus, future work should include other
Khmer-supporting LLMs, such as GPT-
0SS [18] or Sea-Lion [19].

2. The assessment of model explainability
and reasoning is qualitative. Thus, fu-
ture work should include other evalua-
tion metrics, such as LLM as a judge.

3. The accuracies on the CP and CKP
datasets are still limited because of
the limited data quality and quan-
tity. Thus, future work should focus on
constructing a large-scale, high-quality
Khmer polarity dataset.



Table 7. Qualitative assessment of the model reasoning and explainability based on the fine-

tuned Qwen-8B model.

Input Text Reasoning Label
yuIsiulnmm (poeunM i RIEIEAGiT yulsihmm/eognni positive
(The food here is delicious, ’
especially the stir-fried soup.) (dellicious food /stir-fried soup) -
tﬁJJn[ﬁhzgm@JnSﬂ[mmLﬁjmmnnmmm 116 mig)a (RmARmeg positive
(I bought the shoes for my children
and they are so comfortable to wear.
I can’t wait to buy more.) (comfortable to wear) -
wigngmaaIsignAv S anIgHs pa e neutral
(Cambodla is located in Southeast Asia. ) (is located) -
tusisimsigl 18 neutral
(This horse is black.) (is) -
HUBB I SIU AR M B8 i SIruthAmm negative
(The food is not very tasty.) (not very tasty) -
MAG UGS WA A gruGgSuntwmpn negative
(He likes to talk badly about others.) (talk badly) -

7 Conclusion Models.  3rd edition, 2025. Online

We propose the first explainable Khmer po-
larity classifier, which not only predicts the
final label but also provides reasoning to jus-
tify its predictions. In this way, it becomes
possible to explain why the model predicts
what it does. Experimental results show that
the fine-tuned Qwen-3 models either outper-
form or perform comparably to existing ap-
proaches on the KP and CKP datasets, re-
spectively, for the Khmer polarity classifica-
tion task.
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Abstract

Detecting fabric defects, especially in textiles
with complex textures, presents significant chal-
lenges due to the intricate nature of fabric pat-
terns. Among various object detection meth-
ods, the YOLO algorithm is renowned for its
real-time performance and accuracy. By treating
object detection as a single regression problem,
YOLO predicts bounding boxes and class prob-
abilities from an entire image in one pass. This
paper proposes a novel approach for fabric de-
tection using the YOLOvS5-Transformer model,
which integrates Transformer architecture to en-
hance defect detection in textiles. YOLOVS,
a fully convolutional neural network, strikes
an optimal balance between speed and accu-
racy in end-to-end detection tasks. Leverag-
ing the latest advancements in deep learning,
YOLO achieves high detection speeds without
significantly compromising precision, making
it ideal for real-world applications. Our pro-
posed YOLOvVS5-Transformer model surpasses
other YOLOVS5 variants, achieving an accuracy
of 82.9%, representing a 5.6% improvement
over YOLOv5s and YOLOv5n and a 2.7%-3.2%
improvement over other versions YOLOvS5m,
YOLOVS], YOLOv5x. Comparative perfor-
mance metrics are also presented, including pro-
cessing time on GPU, precision, recall, and F1
score.

Keywords: YOLOvS, Object Detection, Fabric
Dataset, Textile Materials.

1 Introduction

With the rapid growth of artificial intelligence
(AD) technology, there has been increasing in-
terest in applying Al solutions to various in-
dustrial challenges, particularly fabric manu-
facturing. The textile industry faces signifi-
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cant challenges in fabric quality control due to
the intricate patterns, textures, and designs in-
volved [1]. Traditionally, manual inspection has
been used for defect detection, but it is labor-
intensive, time-consuming, and prone to hu-
man error. To overcome these limitations, com-
puter vision techniques have emerged as power-
ful tools for automating fabric defect detection,
significantly improving accuracy and efficiency
[2]. Among these techniques, object detection
algorithms like You Only Look Once (YOLO)
have gained prominence due to their real-time
performance and ability to handle large-scale
data [3]. YOLO'’s strength lies in treating object
detection as a single regression problem, predict-
ing object locations and classifications in a sin-
gle pass through the network. However, detect-
ing fabric defects remains challenging due to tex-
tiles’ complex textures and subtle irregularities
[4].

Convolutional neural networks (CNNs) have
become the dominant model in computer vi-
sion, excelling in tasks like image classifica-
tion, object detection, and semantic segmenta-
tion [5]. Existing CNN-based object detection
models can be divided into one-stage and two-
stage detectors.

One-stage detectors, such as the YOLO fam-
ily of models and single-shot multi-box detectors
(SSD), treat object detection as a straightforward
regression problem. These models achieve fast
inference speeds by directly predicting bounding
boxes and class labels in a single step, making
those ideal for real-time applications [6]. How-
ever, it may sacrifice some accuracy, especially
when dealing with minor or overlapping objects.
Two-stage detectors, such as Faster R-CNN [7],
offer higher accuracy by separating the detection
process into two stages: the region proposal net-
work (RPN) identifies candidate object regions,



and a second stage refines these proposals and
classifies the objects [8][9]. While more accu-
rate, two-stage models are often slower and more
computationally intensive.

This paper presents the application of The de-
velopment of the YOLOVS5-Transformer model,
which combines YOLOVS5’s object detection ca-
pabilities with the Transformer’s multi-scale in-
formation fusion, and a detailed comparison of
performance metrics, including processing time
on (CPU and GPU), precision, recall, F1 score,
and frames per second (FPS) across different
models.

2 Related Work

Object detection is a critical task in computer vi-
sion that involves both localizing objects within
an image and classifying them into predefined
categories.  The algorithm typically returns
bounding boxes, confidence scores, and class la-
bels for detected objects [8]. Recent advances
in deep learning have led to the development
of highly efficient and accurate object detection
models, categorized primarily into one-stage and
two-stage detectors.

In addition to real-world data, simulation
datasets have become essential for training and
evaluating these models, particularly when ob-
taining diverse or labeled real-world data is chal-
lenging. Simulated datasets offer controlled en-
vironments to replicate varying conditions, such
as lighting changes, object occlusions, and dif-
ferent viewpoints, ensuring robust model perfor-
mance across scenarios [9].

Processing these datasets involves data aug-
mentation techniques, including scaling, rota-
tion, and noise addition, which help improve
model generalization. Proper pre-processing
tasks, including normalization and convert-
ing annotations into formats such as COCO
or YOLO, ensure compatibility with detection
frameworks. Leveraging simulations acceler-
ates algorithm development and provides a cost-
effective way to test object detectors under com-
plex or rare conditions without relying entirely
on physical data collection [10].

One-stage detectors, such as YOLO and
single-shot multi-box detectors (SSD), prioritize
speed by directly predicting object locations and
classifications from the image in a single net-
work pass [11]. YOLOVS, in particular, is a
widely used model for its high speed and rela-
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tively high accuracy. It uses convolutional neural
networks (CNNs) to extract spatial features from
the image, enabling fast real-time detection [12].

YOLOVS5 employs a feature pyramid network
(FPN) to detect objects at different scales, mak-
ing it suitable for multi-scale object detection
tasks. It divides the image into grid cells, pre-
dicting bounding boxes and confidence scores
for each cell. Despite its speed, YOLOvVS may
encounter difficulties with small or occluded ob-
jects due to its reliance on local image features
and relatively limited receptive field in the CNN
layers.

Another one, two-stage detectors like Faster
R-CNN are designed for higher accuracy, though
they may be slower compared to one-stage de-
tectors [13]. These models generate region pro-
posals (potential object locations) and then refine
those proposals through a second-stage classifi-
cation and bounding box regression.

The advantage of two-stage detectors lies in
their ability to provide more precise localization,
as the second stage refines the predictions made
in the first stage. While two-stage detectors typ-
ically offer higher accuracy, they are computa-
tionally more expensive due to the added com-
plexity of region proposal generation and refine-
ment [14].

The proposed YOLOvS-Transformer model
builds upon the advantages of the YOLOVS ar-
chitecture and Transformer networks. By com-
bining the fast inference speed of YOLOvV5 with
Transformers enhanced global context capture
ability, this model aims to balance speed and ac-
curacy, particularly for detecting torn fabric de-
fects [15].

YOLOVS5 Backbone: The backbone consists
of convolutional layers that extract hierarchical
features from the input image. These features
are passed through neck architecture, like the
FPN, which can detect objects at different scales.
Transformer Integration: The Transformer net-
work is integrated into the detection pipeline to
enlarge the receptive field beyond the local re-
gion CNNs covers. Transformers excel at mod-
eling long-range dependencies in the image, en-
abling the model to effectively capture regional
and global features [16].

This is especially important for fabric de-
fect detection, where defects might span across
large areas or appear at multiple scales. Two-
Stage Refinement: After the initial predictions



by the YOLOVS5 backbone, a second stage refines
the predictions by leveraging the global context
modeled by the Transformer.

This refinement stage helps improve the accu-
racy of bounding box localization, especially for
challenging cases like overlapping or minor de-
fects on complex fabric textures [17].

3 Methodology

In this section, we present a comprehensive
overview of the model architecture of YOLOvV5
in Figure 1. Our innovative model integrates
YOLOVS with a Transformer model to enhance
accuracy and speed without compromising effi-
cient object detection performance.

Specifically, we have incorporated Trans-
former layers into the YOLOVS backbone to aug-
ment the model’s capacity to capture global con-
textual information and long-range dependencies
within the image.

This hybrid architecture combines the rapid,
one-stage detection of YOLOVS with the atten-
tion mechanisms of Transformers, enabling the
model to discern objects in intricate, crowded
scenes better. By integrating the Transformer
model, our objective is to achieve enhanced pre-
cision in detection, particularly in demanding
scenarios, while capitalizing on the real-time ca-
pabilities of YOLOVS.

Transformers have become increasingly pop-
ular in computer vision due to their capability
to capture global context and long-range depen-
dencies, making them particularly valuable for
object detection.

The Transformer model divides an image into
small patches, each flattened into a token and
passed through multiple self-attention layers.
Through this process, the self-attention mech-
anism computes relationships between patches,
enabling the model to comprehend global depen-
dencies and focus on different parts of the image.

Multi-head attention is applied in parallel to
capture diverse aspects of the image, and the
results are then processed through feed-forward
layers with layer normalization to stabilize the
training process. This approach assists the
model in accurately predicting object classes and
bounding boxes using learnable object queries.

In our integrated architecture, the features ex-
tracted from YOLOVS5’s backbone are segmented
into patches and passed through Transformer
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layers to enhance the model’s capacity to cap-
ture global context. The Transformer outputs
are combined with YOLOvVS’s feature pyramid
network (FPN) to enhance multi-scale detection,
enabling the model better to detect small, oc-
cluded, or overlapping objects.

This hybrid approach combines the speed and
efficiency of YOLOvVS with the attention-driven
accuracy of the Transformer, resulting in a pow-
erful and context-aware object detection model.

Pradiction

Figure 1. The architecture of the Transformer
model.

3.1 Image Labeling

We utilized LabelMe, a versatile graphical image
annotation tool depicted in Figure 2, to metic-
ulously create polygonal annotations for object
detection tasks. LabelMe’s flexibility makes it
well-suited for preparing datasets for different
YOLO versions. By manually tracing polygons
around objects in the images, we could accu-
rately annotate object boundaries, which is cru-
cial for training precise YOLOv5 models. These
detailed annotations enable the model to detect
objects with great accuracy. Once the annota-
tions were completed, LabelMe generated JSON
files containing the annotation data, which we
converted into the required format for YOLOVS.

LabelMe’s integration with Python also facil-
itated the seamless incorporation of data aug-
mentation techniques. We utilized scripts to ap-
ply transformations such as rotation, scaling, and
color adjustments directly to the annotated im-



ages and their corresponding JSON files. This
process created an augmented dataset, enhancing
the model’s robustness and generalization capa-
bilities. This integration has simplified the pro-
cess of preparing and augmenting the dataset, ul-
timately contributing to the exceptional perfor-
mance of YOLOVS in various object detection
scenarios.

Figure 2. Labeling on Image by using the La-
belMe tool.

3.2 Dataset

The dataset discussed in this section, captured
using the LUMIX GH6 camera, is a crucial re-
source for fabric category experimentation. It
consists of 7,620 images, the dataset was divided
into 80% for training, 10% for validation, and
10% for testing to ensure balanced model eval-
uation, each categorized into one of five distinct
fabric groups: Cotton Fabric Plain, Fabric Wide
Hanbok Fabric Nobang DTP, Cotton Yarn-Dyed
Check Stripe Plain Fabric, Hanbok Fabric, and
Cotton Blend Plain Fabric. This rich diversity
in fabric types facilitates comprehensive train-
ing and testing of object detection models on
YOLOVS-Transformer.

3.3 Data Augmentation

To enhance the diversity and robustness of the
fabric dataset, we employed a comprehensive set
of data augmentation techniques, as illustrated in
Figure 3. These techniques included horizontal
and vertical flips to mirror the images, random
rotations within a range of -45 to +45 degrees,
Gaussian blurring to simulate out-of-focus con-
ditions, and brightness adjustments varying from
-22% to +22% for different lighting scenarios.
Additionally, we introduced random noise to
mimic real-world imaging variations and dark-
ened images to simulate low-light environments.
We converted images to grayscale to focus on
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texture and pattern rather than color. Cropping
was also applied to emphasize different parts of
the fabric, aiding the model in learning from di-
verse perspectives. Our experiment focused on
the transformations within the green polygons
highlighted in Figure 3. Specifically, we ex-
amined random rotations and brightness adjust-
ments to simulate real-world variations and en-
hance the model’s accuracy in classifying fabrics
under diverse conditions.

Figure 3. The techniques for applying the data
augmentation.

4 Results and Discussion

In this section, we discuss the fabric prediction
model based on YOLOvVS5-Transformer. We used
a batch size of 32 for training to balance compu-
tational efficiency and model accuracy. A weight
decay of 0.0005 was also employed to regularize
the model and mitigate overfitting by penalizing
large weights. We standardized the input image
size to 320 x 320 pixels.

Training was carried out over 100 epochs to
allow the model ample iterations to learn from
the data. A learning rate of 0.0001 was chosen
to ensure steady and reliable convergence. We
opted for the stochastic gradient descent (SGD)
optimizer due to its effectiveness in large-scale
machine-learning tasks. We configured eight
workers to parallelize data loading and expedite
the training process.

Table 1. Experiment environment.

Component Specification

Operating System  Windows 10 (64-bit)

Python Version 3.12.4

PyTorch Version  2.3.1

CUDA Toolkit 11.8

cuDNN Version 8.9.7

CPU AMD Ryzen 9 5900X

GPU NVIDIA GeForce RTX 4060
RAM 128 GB DDR4




In our training experiments, we compared the
time performance of YOLOvS and YOLOVS-
Transformer on both CPU and GPU, as shown
in Table 2. In addition to inference time, we now
include the number of floating-point operations
(GFLOPs) and model parameters for fair com-
parison.

The proposed YOLOVS-Transformer model
maintains a moderate computational cost (43.3
GFLOPs, 20.4 M parameters), which is lower
than YOLOv5Sm (47.9 GFLOPs, 21.2 M) and
substantially lighter than YOLOv5x (203.8
GFLOPs, 86.7 M). Despite the integration of
Transformer layers, our model achieved faster
run-time on both CPU and GPU.

This efficiency improvement can be attributed
to two main factors: (1) the Transformer block
effectively enhances feature representation with-
out significantly increasing convolutional com-
plexity, thereby reducing redundant computa-
tions during feature extraction; and (2) the op-
timized feature fusion and reduced number of
convolutional layers in the neck lead to fewer se-
quential operations, improving parallel process-
ing efficiency on GPUs.

Consequently, YOLOv5-Transformer
achieves a 69.61% CPU and 57.34% GPU
speed improvement over YOLOv5x, while
maintaining high accuracy. These results con-
firm that our design enhances computational
efficiency without sacrificing model precision.

Table 3 compares the performance of various
YOLOVvVS variants and the proposed YOLOvVS-
Transformer model based on GPU latency and
frames per second (FPS).

The proposed YOLOvS-Transformer achieves
a high mean average precision (mAP) of 82.9%,
representing an improvement of 2.2-4.4% over
other YOLOvVS models, while maintaining a
competitive FPS of 100.33 and GPU latency of
3183 ms.

Although the YOLOvS5-Transformer has
higher GFLOPs (43.3) than YOLOv5s (15.8)
and YOLOv5n (4.1), its FPS remains compa-
rable. This seemingly counterintuitive result
arises because FLOPs alone do not fully re-
flect real-time performance. The Transformer
block enhances feature representation without
sub-stantially increasing memory transfer or
kernel launch overhead, allowing more efficient
parallelization on GPUs.

Moreover, our model employs optimized ten-
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sor operations and fewer sequential convolu-
tional layers in the neck, reducing pipeline bot-
tlenecks. As a result, the GPU utilization is
higher and inference time remains stable, even
with moderately increased computational com-
plexity.

5 Conclusions

In this paper, we propose the YOLOVS5-
Transformer algorithm for detecting torn paths
on fabric datasets from a material testing ma-
chine captured by a camera. This work aims to
improve the existing YOLOVS5 algorithm.

Our approach combines a convolutional net-
work and a Transformer to design a new model
within YOLOvVS and validate several improved
measures to enhance YOLOvVS’s performance
in fabric detection. Specifically, our proposed
YOLOv5-Transformer module integrates the lo-
cal observation capabilities of ConvNext and the
global analysis capabilities of the Transformer,
making a more significant contribution to im-
proving detection accuracy compared to the orig-
inal YOLOvVS module.

Additionally, we integrate the YOLOV5-
Transformer module to reduce interference from
background information, allowing the network
to focus more effectively on valuable areas and
further enhance detection accuracy. The pro-
posed model achieved a 4.4% higher mAP com-
pared to YOLOvS5s on the fabric dataset.

While the YOLOvS-Transformer achieves the
highest mAP, further exploration of other vari-
ants, fine-tuning hyperparameters, and incorpo-
rating advanced feature aggregation techniques
could further improve accuracy while main-
taining efficiency, surpassing other compara-
tive to other existing papers such as Teacher
Network, Improved YOLOvSs, FD-YOLOVS,
and YOLOVS. The YOLOvS-Transformer
demonstrated a 4.4% higher mAP compared to
YOLOVSs, a 2.2% improvement over YOLOVS],
and a 2.6% increase over YOLOv5x. These re-
sults reflect the robustness of our proposed algo-
rithm.

Furthermore, we plan to investigate the poten-
tial of our model on more complex datasets, such
as 3D objects and multiple objects in a single im-
age, using two-stage detectors. We also plan to
expand the fabric dataset by adding more cate-
gories for each type of fabric. Additionally, we
aim to compare our model with more versions of



Table 2. Comparison results of the model’s performance by using CPU and GPU.

Models GFLOPs Parameters (M) CPU (ms) GPU (ms)
YOLOVS5s 15.8 7.2 28,960 1,988
YOLOv5n 4.1 1.9 13,081 1,749
YOLOvV5m 47.9 21.2 68,405 3,121
YOLOVSI 107.7 46.5 130,105 4,506
YOLOv5x 203.8 86.7 212,994 4,629
YOLOvV5-Transformer 433 20.4 66,121 3,003

Table 3. Comparison of YOLO models and our proposed model on the fabric dataset using GPU.

Models GFLOPs P (%) R(%) mAP0.5(%) wmAP (%) GPU(@ms) FPS

YOLOVS5s 15.8 99.7 100 99.5 78.5 1,988 101.88
YOLOv5n 4.1 99.7 100 99.5 78.5 1,749 100.82
YOLOvV5m 479 99.9 100 99.5 80.7 3,121 84.28
YOLOvS5I 107.7 99.8 100 99.5 80.5 4,506 110.92
YOLOv5x 203.8 99.9 100 99.5 80.3 4,629 102.91
YOLOVS5-Transformer 433 99.9 100 99.5 82.9 3,183 100.33

the YOLO family and work on improving frames
per second (FPS) performance for real-time sys-
tems.
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Abstract

Air pollution from fine particulate matter (PMs 5)
is a major public health concern in Phnom Penh,
Cambodia, driven by rapid urbanization, traffic con-
gestion, and industrial activity. Accurate forecast-
ing of PMs 5 concentrations is essential for issu-
ing early warnings and supporting policy interven-
tions. This study evaluates six machine learning
and deep learning models Light Gradient Boosting
Machine (LightGBM), eXtreme Gradient Boosting
(XGBoost), Extra Trees, Deep Neural Networks
(DNN), Long Short-Term Memory (LSTM), and
Bidirectional LSTM (Bi-LSTM) using OpenAQ data
from May to August 2025. To mitigate extreme
outliers, a logarithmic transformation was applied
to positively skewed variables, improving stability
and predictive reliability. Among the models, Extra
Trees achieved the best performance, with RMSE of
0.0607, MAE of 0.0468, and R? of 0.9962. These
findings demonstrate that well-optimized ensemble
tree-based models can outperform complex deep
learning approaches under local data constraints,
providing an efficient and reliable solution for PM 5
forecasting and supporting timely public health in-
terventions in Cambodia.

Keywords: Air Quality, PM2.5, Forecasting, Ma-
chine Learning, Deep Learning, Phnom Penh

I. Introduction

Air pollution from fine particulate matter (PMy 5) is
a leading environmental risk factor for respiratory
and cardiovascular diseases, particularly in rapidly
urbanizing cities where industrial emissions and
traffic congestion are increasing. Accurate short-
term forecasts of PM, 5 concentrations enable public
health agencies to issue timely warnings, help resi-
dents reduce exposure, and support evidence-based
policy decisions.

Phnom Penh, Cambodia’s capital, has experienced
episodic and seasonally elevated PMs 5 concentra-
tions in recent years. Figure 1 illustrates a notable
episode on 23 January 2025 when air quality reached
the “Very Unhealthy” category. In this study, we
analyze local air quality measurements collected
from May to August 2025 to evaluate forecasting
approaches that are appropriate for the city’s envi-
ronmental context and data constraints.

Figure 1 Phnom Penh Faces “Very Unhealthy” Air
Quality Amid Rising PM3 5 Levels on January 23,
2025 (Source: Kiripost).

A range of machine learning and deep learning
methods has been applied to PMs 5 forecasting.
Tree-based ensembles such as XGBoost and Light-
GBM provide fast training, built-in handling of miss-
ing values, and interpretable feature importances
but require explicit feature engineering to capture
temporal dependencies [1], [2]. Recurrent neural
networks including LSTM and Bi-LSTM are effec-
tive at capturing sequential dependencies and often
achieve strong short-term predictive performance,
but they require larger datasets and careful hyperpa-
rameter tuning [3], [4]. Deep neural networks can
reach very high R? values on some datasets but
are computationally intensive and less interpretable
[5]. Hybrid approaches that combine meteorological
model outputs with ensemble methods have demon-
strated robust 1-2 day forecasts when such external
inputs are available [6]. These studies highlight com-
plementary strengths across model classes, but their
performance is highly dependent on data quality,
local conditions, and feature selection.

Among these ensemble methods, the Extremely
Randomized Trees (Extra Trees) algorithm has
shown promising results for environmental data
forecasting. Extra Trees is an ensemble learning
method based on decision trees, similar to Random
Forest, but it introduces a higher degree of ran-
domization during feature selection and split thresh-
old determination. This randomization helps reduce
variance and overfitting while maintaining low bias,
making it robust to noisy or highly variable datasets
such as those encountered in air quality monitoring.
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Furthermore, Extra Trees is computationally effi-
cient and requires minimal hyperparameter tuning,
offering a strong balance between accuracy, inter-
pretability, and training cost. These characteristics
make it particularly suitable for practical air quality
forecasting where data are limited or irregularly
distributed.

Despite substantial progress in other regions, stud-
ies specifically targeting Phnom Penh remain limited
[71, [8]. To address this gap, the present work eval-
uates representative high-performing models from
prior studies including XGBoost, LightGBM, Extra
Trees, optimized LSTMs, Bi-LSTM, and a deep neu-
ral network on a Phnom Penh dataset covering the
May—August period. The analysis also investigates
the effect of log transformation on skewed vari-
ables, a widely used technique for reducing variance
instability and improving regression performance
[9]. Through this comparative evaluation, the study
provides new insights into which modeling strategies
are most suitable for short-term PM, 5 forecast-
ing in Phnom Penh under local environmental and
data constraints, while offering practical evidence to
guide model selection and future research in similar
urban contexts.

II. Methodology

A. Dataset

The dataset was obtained from OpenAQ and consists
of air quality measurements recorded in Phnom
Penh between May 1 and August 31, 2025, which
corresponds to the rainy season in Cambodia. Each
observation corresponds to an hourly measurement,
yielding a total of 2,780 rows per parameter. The
raw dataset contained both dynamic measurements
and static metadata fields. Since the metadata (such
as location identifiers, latitude/longitude) remained
constant for a single monitoring site and contributed
no predictive information, they were discarded. The
dataset was reshaped from long to wide format using
the pivot_table function in Pandas, with each
parameter represented as a column indexed by its
timestamp.

Five parameters were retained for analysis:
PM1, PMsy 5, relative humidity, temperature, and
UMO003 (Table I). All values were rounded to
two decimal places for consistency across mea-
surements. The dataset was chronologically sorted
by datetimeLocal, which served as the index
for subsequent time series analysis. To preserve
temporal dependencies, the dataset was split into
training (May-July, 75%), validation (first half of
August, 13%), and testing (second half of August,
12%). Collecting data exclusively during the rainy
season is relevant, as precipitation and associated
meteorological conditions can significantly influence
PM; 5 concentrations and temporal patterns.

Summary statistics are provided in Table II. PM1,
PM, 5, and UMO003 show very high maximum values
compared to their medians, indicating the presence
of extreme outliers. In contrast, temperature and
relative humidity vary within narrower ranges and
appear more stable.

To assess distributional properties, skewness was
computed using Equation (1). PM1, PMs 5, and
UMO003 exhibit high positive skewness values (Ta-
ble 1V), confirming the presence of heavy-tailed
distributions. This justifies the application of a log
transformation to stabilize variance and reduce the
influence of extreme outliers [9].

% Sy (i —1)?
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The target variable for forecasting was PMs s,
while the input features included PM1, relative hu-
midity, temperature, and UMO003. This setup ensured
that models were trained on representative historical
data, tuned on unseen validation data, and evaluated
on an independent test set.

Skewness =
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B. Investigated ML-related Models

In this study, we investigated both tree-based and
deep learning models for PM2.5 prediction. The
input features consisted of main environmental vari-
ables (pml, um003, temperature, relative humidity)
along with lagged PM2.5 values at 1, 3, 6, 12, and
24 hours to capture temporal dependencies [10]. For
deep learning models, sequences of length 24 hours
were created to exploit time-series patterns.

Tree-Based Models

Three tree-based models were tuned using Grid-
SearchCV with 5-fold cross-validation [11], [12]:

o Extra Trees Regressor with hyperparameters:
n_estimators = 300, max_depth = None,
min_samples_split = 5.

o XGBoost Regressor with hyperparameters:
n_estimators = 200, max_depth = 6,
learning_rate = 0.05.

o LightGBM Regressor with hyperparameters:
n_estimators = 100, num_leaves = 63,
learning_rate = 0.05.

The cross-validated mean squared errors were

0.00724, 0.007762, and 0.008366 for Extra Trees,
XGBoost, and LightGBM, respectively.

Deep Learning Models

For deep learning, we implemented DNN, LSTM,
and Bi-LSTM models. Input sequences of 24 hours
were flattened for DNN and kept as 3D sequences
for LSTM/Bi-LSTM. Hyperparameters were tuned
manually, and early stopping was applied to prevent
overfitting [13]. The best configurations and valida-
tion losses were:

o DNN: units = 32, dropout = 0.3, learning rate

= 0.001, validation loss = 0.1965.
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Table I Description of Dataset Parameters

Parameter Unit Description

PM1 g m—3 Particulate matter with diameter < 1 pm

PMs 5 pug m—3 Fine particulate matter with diameter < 2.5 pm
Relative Humidity % Ratio of water vapor to saturation at given temperature
Temperature °C Ambient air temperature

UMO003 particles cm—3  Ultrafine particles with diameter < 0.3 um

Table II Summary Statistics of Air Quality

Statistic PM1 PM2.5 RH Temp UMO003
Mean 8.14 13.25 66.21 2691 666.45
Std 8.76 13.07 5.73 1.51 492.75
Min 0.00 0.00 4596  23.22 69.39

25% 1.70 3.56 62.58 2581 353.63
50% 5.03 9.09 67.27  26.78 544.18
75% 12.27 20.75 7043  27.86 842.49
Max 131.82  229.16 79.56 32.11 9607.53

Table III Interpretation of skewness values

Skewness Value Interpretation

—0.5t0 0.5 Approximately symmetric distribution
—1to —0.50r0.5t01 Moderate skewness

<—lor>1 Highly skewed distribution

Table IV Skewness scores of dataset parameters

Parameter Skewness
PM1 2.883
PMa> 5 3.585
Relative Humidity -0.659
Temperature 0.423
UMO003 5.083

o LSTM: units = 64, dropout = 0.1, learning rate
= 0.001, validation loss = 0.15009.

o Bi-LSTM: units = 64, dropout = 0.2, learning
rate = 0.001, validation loss = 0.1552.

Only tree-based models used GridSearchCV for
systematic hyperparameter tuning; deep learning
models relied on manual search. All models were
trained and evaluated on the validation set, with final
testing performed on unseen data.

C. Evaluation Metrics

To assess predictive performance, models were eval-
uated using three widely adopted regression metrics:
Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and the Coefficient of Determination
(R?). MAE computes the average magnitude of
residuals without considering their direction, pro-
viding an intuitive measure of prediction accuracy;
lower values indicate better performance. RMSE, in
contrast, squares residuals before averaging and then
applies a square root, thereby penalizing large errors
more heavily than MAE. This makes RMSE more
sensitive to outliers, which is particularly important
in air quality forecasting where extreme pollution
events may occur. Finally, R? quantifies the propor-
tion of variance in the observed data that is explained
by the model. Values closer to 1 indicate stronger

explanatory power, while values below 0 suggest
that the model performs worse than a simple mean
baseline.

The three metrics are formally defined as follows:

1 n A
MAE:gi;\yi—yi\ )
3

21;1 (yi — 9)?
where y; represents the observed values, y; the
predicted values, ¢y the mean of observed values, and
n the number of samples. Together, these metrics
provide a balanced evaluation: MAE offers inter-
pretability, RMSE emphasizes large deviations, and
R? provides a normalized measure of overall model
fit.

III. Results and Discussion

A. Data Preprocessing

To stabilize variance and reduce the disproportionate
influence of extreme observations, a logarithmic
transformation was applied to positively skewed
variables, defined as ' = log(1 + ) [9]. This
transformation is commonly used in environmental
time series where pollutant concentrations exhibit
long-tailed distributions.

Figs. 2 demonstrate the impact of the log transfor-
mation on distributional symmetry. Before transfor-
mation , PM;, PMs 5, and UMO003 exhibited heavy
right skew with extreme outliers. After transfor-
mation, the distributions became more symmetric
and compact, making them better suited for both
statistical analysis and model training. By mitigating
skewness and compressing extreme spikes, the log
transformation enhances model robustness, particu-
larly for metrics such as RMSE that are sensitive to
large deviations.

The effect of this transformation is further il-
lustrated in Fig. 3, which presents the correlation
heatmap of the log-transformed parameters. Com-
pared to the raw correlations, the log scale slightly
reduced the magnitude of certain associations, in-
dicating that extreme values in the raw data had
previously inflated correlation coefficients. This ad-
justment provides a more reliable representation of
relationships among features.
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Figure 2 Box plots of PM;, PM 5, and UMO003 be-
fore and after log transformation, showing improved
symmetry and reduced skewness.

Correlation with PM2.5

Correlation with PM2.5

pml relativehumidity temperature um003
parameter

Figure 3 Correlation heatmap of log-transformed pa-
rameters, showing more reliable relationships com-
pared to raw correlations.

B. Discussion

The developed PMs, 5 forecasting framework demon-
strated strong predictive performance across both
tree-based and deep learning architectures. Among
all evaluated models, the ExtraTrees regressor
achieved the lowest error (RMSE = 0.8039, MAE
= 0.4906, and R? = 0.9939), outperforming other
ensemble and neural network models. The superior
performance of tree-based methods highlights their
robustness in handling multivariate sensor data and
temporal lag features without requiring extensive
hyperparameter tuning or complex network architec-
tures.

The results in Table V indicate that the Ex-
traTrees model consistently outperformed all other
algorithms in this study, achieving an R? above 0.99
and significantly lower error metrics. These find-
ings demonstrate that ensemble-based approaches

Table V Model performance comparison. Lower
MAE/RMSE and higher R? indicate better perfor-
mance.

Model RMSE MAE R?

ExtraTrees 0.0607 0.0468  0.9962
XGBoost 0.0647  0.0495 0.9957
LightGBM 0.0691  0.0530 0.9951
DNN 0.6163  0.4852 0.6145
LSTM 0.6004  0.4602 0.6341
Bi-LSTM 0.5663  0.4338 0.6744

are more efficient in capturing complex temporal
dynamics of air pollutants compared to deep learning
models, which required greater computational effort
but yielded higher residual variance.

ExtraTrees: Actual vs Predicted PM2.5 (Test Set)

o Actual Py
4071 o Predicted _8r7°

PM2.5 Values

00 o5 10 15

20 25
Actual PM2.5

Figure 4 Scatter plot of actual vs. predicted PMs 5
values on the test set.

To further contextualize the performance, Ta-
ble VI presents a regional comparison between this
study and the PMs 5 forecasting system proposed by
Minh et al. (2021) in Ho Chi Minh City, Vietnam.
Their approach combined meteorological simula-
tions from the Weather Research and Forecasting
(WRF) model with the ExtraTrees regressor, achiev-
ing RMSE = 7.68 g m~3, MAE = 5.38 ug m~3,
and R? = 0.68. In contrast, the ExtraTrees model
in this study achieved RMSE = 0.80 pg m~3 and
R? = 0.9939, reflecting a substantial improvement
in predictive accuracy and model stability.

It is important to note that this comparison is illus-
trative rather than direct, as the two studies employed
different feature sets, input sources, and forecast-
ing objectives. While Minh et al. (2021) integrated
meteorological forecasts from the WRF model with
machine learning inputs, the present study relied
solely on measured sensor data and engineered tem-
poral lag features such as differencing and a 24-
hour sequence window. Moreover, Minh et al. (2021)
focused on regional-scale forecasting, whereas the
current work emphasizes localized, high-frequency
prediction for an urban monitoring site in Phnom
Penh. Despite these methodological differences, both
cities share a tropical monsoon climate, allowing for
a meaningful regional performance comparison.

The substantially lower error metrics observed in
this study indicate that localized, data-driven mod-
els can outperform hybrid meteorological-machine
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Table VI Comparison of PMs 5 forecasting performance between this study and Minh et al. (2021).

Study RMSE (ug m—3) MAE (ug m—3) R?
This Study (Phnom Penh, 2025) 0.80 0.49 0.9939
Minh et al. (2021, Ho Chi Minh City) 7.68 5.38 0.68

learning systems when high-resolution, site-specific
observations are available. This finding underscores
the potential of lightweight, sensor-based forecasting
frameworks for operational deployment in Southeast
Asian urban environments, particularly in regions
with limited access to meteorological modeling re-
sources.

These findings reinforce that highly complex deep
learning architectures are not always necessary to
achieve state-of-the-art forecasting accuracy. Instead,
well-optimized ensemble models such as ExtraTrees
can provide a strong balance between precision,
interpretability, and computational efficiency. For
Cambodia, this result has direct implications for
evidence-based policymaking and public health pro-
tection, as reliable and accessible air quality fore-
casts can support early warnings and mitigation
measures for pollution episodes.

C. Limitations and Future Work

The dataset used in this study spans only four
months (May—August 2025), which may limit the
models’ ability to capture seasonal and long-term
variations in air pollution. Air quality in Phnom Penh
can be influenced by distinct dry and wet season pat-
terns, transboundary pollution, and festival-related
activities. As such, the restricted temporal coverage
may reduce the generalizability of the models to
other periods or years. Future studies will integrate
data from multiple years and sources, including
meteorological and satellite-derived variables, to en-
hance model robustness and adaptability.

In addition, an analysis of error cases revealed that
model performance tended to decline during abrupt
changes in weather conditions, such as sudden rain-
fall or shifts in wind direction. These conditions can
alter PM> 5 concentrations rapidly and nonlinearly,
posing challenges for data-driven models trained
primarily on smooth temporal patterns. Future work
could explore hybrid physical—statistical modeling
frameworks or ensemble correction strategies that
dynamically adjust predictions under such transient
conditions.

IV. Conclusion

This study highlights the potential of machine learn-
ing to advance air quality forecasting in Phnom
Penh, Cambodia, with a specific focus on PMj 5
prediction. By applying logarithmic transformation
to mitigate skewness, we improved data quality
and model stability, ensuring more reliable learn-
ing outcomes. Among the models evaluated, Ex-
tra Trees consistently delivered superior perfor-

mance, surpassing both other ensemble techniques
and deep learning approaches. Its combination of
predictive accuracy, robustness, interpretability, and
computational efficiency makes it a highly prac-
tical choice for real-world forecasting systems in
resource-constrained settings.
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Abstract

Rice is a crucial crop globally, particularly in
Asia, where it serves as a staple food. How-
ever, various diseases severely affect rice crop
yields, and without proper detection, these dis-
eases can spread, leading to a substantial decline
in production. In extreme cases, diseases can re-
sult in a total crop loss, threatening food secu-
rity. Deep learning, particularly Convolutional
Neural Networks (CNNs), has become the stan-
dard method for image identification and clas-
sification tasks. Accurate diagnosis of rice dis-
eases is essential to mitigate these impacts, yet
current diagnostic methods are often inefficient,
requiring specialized equipment. This study de-
veloped a deep learning—based automatic rice
disease diagnosis method using an ensemble of
CNN models. The method, built on deep learn-
ing, utilized a dataset of 17,500 images cover-
ing seven types of rice diseases, including bac-
terial blight, hispa, leaf blast, and others. The
Ensemble Model, which combined several sub-
models, was the core of this method. Vali-
dation showed that EfficientNet-BO, DenseNet-
121, and MobileNetV2 were the most effec-
tive submodels, achieving an overall accuracy of
96%. The Ensemble Model minimized confu-
sion between disease types, reducing misdiagno-
sis and enhancing disease recognition accuracy,
making it a reliable tool for rice disease detec-
tion.

Keywords: Rice leaf diseases, Deep learning
classifier, CNNs, Ensemble learning

1 Introduction

Rice is one of the most important staple crops
worldwide, and its yield depends on multiple
factors, including soil type, weather conditions,
irrigation facilities, geography, seed selection,
and biological threats [1], [2]. Among these
threats, plant diseases are a major cause of
yield reduction and economic loss, particularly
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in Asia, where rice is a dominant food source [3].
Bacterial, fungal, and viral infections, includ-
ing Bacterial Blight, Hispa, Leaf Blast, Sheath
Blight, Tungro, and Brown Spot, frequently
damage rice crops, leading to poor grain quality,
lower production, and, in severe cases, complete
crop failure. Protecting rice crops from these dis-
eases is therefore critical for food security.
Traditional diagnosis of rice diseases relies on
visual inspection, expert knowledge, and refer-
ence guides [4]. While these methods are help-
ful, they are time-consuming, labor-intensive,
and prone to human error. They also often re-
quire trained specialists or specialized equip-
ment that may not be accessible to farmers in
rural areas. Consequently, automated rice dis-
ease detection methods have received increasing
attention as a faster and more reliable alternative.
Early studies applied computer vision and ma-
chine learning techniques for crop disease de-
tection, including handcrafted feature extrac-
tion and classifiers such as support vector ma-
chines (SVMs) and random forests [5]. Al-
though these approaches achieved moderate suc-
cess, they relied heavily on manual feature en-
gineering, which limited their generalization to
diverse field conditions.
More recently, deep learning has emerged as
a powerful alternative for classifying plant dis-
eases. CNNs in particular have demonstrated
strong performance by automatically learning hi-
erarchical features from raw images [6]. Mod-
els such as ResNet, DenseNet, and Efficient-
Net have achieved high accuracies across various
crops. However, relying on a single CNN archi-
tecture may still lead to overfitting or misclassi-
fication, especially for visually similar diseases.
To overcome these limitations, ensemble learn-
ing, which combines predictions from multiple
models, has been proposed as an effective strat-
egy to improve robustness and reduce errors [7].
In this study, we focus on the development
and evaluation of deep learning models for rice



disease classification. A total of 63,889 images
were initially collected from public sources, in-
cluding Kaggle, Mendeley, and Roboflow, cov-
ering healthy leaves and ten rice diseases. To
ensure balanced representation and avoid class
bias, undersampling was applied, resulting in
a final dataset of 17,500 images evenly dis-
tributed in seven categories (six major rice dis-
eases and healthy). Three CNN architectures,
including EfficientNet-BO, DenseNet-121, and
MobileNetV2, were trained and evaluated, and
their predictions were integrated through ensem-
ble learning. The experimental results show that
the ensemble model consistently outperformed
individual CNNs, achieving an overall accuracy
of 96%.

The main contributions of this paper are as fol-
lows.

* We trained a deep learning network to di-
agnose seven different types of rice disease,
including healthy samples.

¢ We evaluated three state-of-the-art CNN
architectures, such as EfficientNet-BO,
DenseNet-121, MobileNetV2, for rice dis-
ease detection.

* We designed an ensemble learning ap-
proach that integrates multiple CNN mod-
els to improve robustness and demonstrated
a high accuracy rate of 96%, which is con-
sidered a good result.

The remainder of this paper is organized as
follows. In the next section, we review related
work that is pertinent to our own. Section III dis-
cusses the methodology of a model. Section IV
describes the experiment and the analysis of de-
tecting rice leaf disease. Finally, the discussion
and conclusion are summarized at the end of this

paper.
2 Related Work

To better position our approach, we review re-
lated research in rice disease detection and en-
semble learning. Prior works can be broadly
grouped into three categories: (1) traditional
computer vision and machine learning tech-
niques, (2) deep learning based approaches for
plant disease detection, and (3) ensemble learn-
ing strategies.
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Early work in crop disease detection relied
on handcrafted feature extraction combined with
classical classifiers. Techniques such as color
analysis, texture descriptors, and shape features
were commonly applied, followed by classi-
fiers like SVM, k-nearest neighbors (KNN), and
random forests [4], [5]. While these methods
achieved moderate success, they required do-
main expertise for feature design and performed
poorly in complex field conditions where light-
ing and backgrounds varied significantly.

The emergence of CNNs has revolutionized
image-based plant disease detection by elimi-
nating the need for manual feature engineering.
CNNs have been widely used to classify diseases
in crops such as rice, maize, wheat, and tomato.
Deep learning has also been applied to other rice-
related tasks. For example, Deng et al. [8] used
CNN-based models to automatically detect pro-
ductive tillers in rice, illustrating the broader ap-
plicability of deep learning techniques in rice
phenotyping and crop analysis. In the domain
of disease detection, Deng et al. [6] proposed
an in-field rice disease detection system using
deep CNNs, demonstrating strong performance
under real-world conditions. Other studies have
evaluated architectures such as ResNet, Incep-
tion, DenseNet, and EfficientNet for leaf disease
classification, achieving higher accuracy com-
pared to traditional machine learning methods
[9]. Despite these advances, individual CNNs
often struggle to distinguish visually similar dis-
eases, resulting in misclassification.

Ensemble learning has been increasingly
adopted to address the limitations of single CNN
models. By combining predictions from mul-
tiple classifiers, ensemble approaches enhance
robustness, mitigate overfitting, and yield more
reliable results. For instance, Deng et al. [6]
employed ensemble CNNs to classify rice dis-
eases, achieving higher accuracy than individ-
ual networks. Similarly, Feng et al. [7] demon-
strated that ensemble methods improved yield
prediction in alfalfa using hyperspectral imagery.
In plant disease detection, ensemble strategies
such as majority voting, soft probability aver-
aging, and stacking have consistently shown ad-
vantages over single models.

While these approaches are promising, sev-
eral challenges remain. Many datasets are im-
balanced, with limited samples for certain dis-
eases, which reduces generalization ability. Fur-



thermore, most prior studies emphasize the per-
formance of single models without fully ex-
ploiting ensemble methods to address inter-
class similarity and misclassification among vi-
sually similar rice diseases. These limitations
motivate our work on developing a balanced
dataset and integrating multiple CNN architec-
tures, such as EfficientNet-BO, DenseNet-121,
and MobileNetV2 to an ensemble model to en-
hance classification accuracy and robustness.

3 Methodology

3.1 Data acquisition

Deep learning requires a large number of train-
ing images to achieve good results. In this
study, a total of 63,889 rice leaf images were
collected from public sources, including Kag-
gle, Mendeley, and Roboflow. The datasets in-
cluded healthy leaves and ten rice diseases such
as Bacterial Blight, Brown Spot, Rice Hispa,
Leaf Blast, Sheath Blight, Tungro, Leaf Scald,
Narrow Brown Spot, Neck Blast, and Leaf Smut
[10], [11]. Table 1 summarizes eleven common
rice diseases, their causal agents, symptoms, and
impacts on the plant, while Figure. 1 shows the
distribution of the initially collected samples. To
ensure a well-rounded dataset, we incorporated
two types of images. White Background Im-
ages, these images were taken in controlled set-
tings with consistent lighting. This makes it eas-
ier to see the rice plants and their symptoms. The
uniform background helps in training machine
learning models by reducing distractions. Field
Background Images, were captured in real agri-
cultural environments. They show the rice crops
in their natural conditions, with various back-
grounds and lighting. This variety helps the
model to learn how diseases appear in real life,
making it more effective for practical use. How-
ever, to balance the dataset of each class, we ap-
ply undersampling, a technique that reduces the
total number of images of some classes, resulting
in a balanced dataset of 2,500 images with equal
representation of healthy crops and each disease
[12]. Each category, including healthy crops and
six rice diseases, contains 2,500 images, with
1,700 field background images and 800 white
background images per class. Therefore, the fi-
nal dataset used for model training and evalua-
tion comprised 17,500 images across seven cat-
egories (six rice diseases and one healthy cate-
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gory), with equal class representation.

3.2 Data preprocessing

Image Processing is performed to reduce overfit-
ting of deep learning models during training and
validation. Before the model reads the images,
the pixels in the image are normalized. Then, we
applied random affine transformations, including
rotations, shifts, and shearing, to introduce the
models to different perspectives. Brightness ad-
justments, Gaussian blur, and flipping were also
applied to help the models learn from various
conditions. Additionally, the images were re-
sized to 224x224 as required by the architectures
of selected deep learning models [13]. Figure 2
shows the processing of data preprocessing step
by step of the models.

3.3 Model development

3.3.1 Convolutional neural network Models

The structure of the CNN has a crucial in-
fluence on the performance of the final model.
To evaluate the effectiveness of different ar-
chitectures, we selected three state-of-the-art
CNN models, including EfficientNet-BO [14],
DenseNet-121 [15], and MobileNetV2 [16].
These models were chosen due to their balance
between accuracy and computational efficiency,
making them suitable candidates for agricultural
applications, including potential deployment on
mobile devices.

3.3.2 Ensemble learning

Ensemble learning combines multiple base
models to enhance robustness and mitigate the
risk of misclassification by leveraging comple-
mentary decision boundaries. In this study,
the predictions of EfficientNet-B0O, DenseNet-
121, and MobileNetV2 were combined using a
voting-based ensemble strategy [17]. Specifi-
cally, we implemented soft voting, in which the
predicted class probabilities from each model
were averaged, and the class with the highest
probability was selected as the final output. This
approach reduces bias from individual models
and provides more stable performance compared
to single CNNss.

3.3.3 Fine-tuning of the models

Fine-tuning was applied to optimize the CNN
models for the rice disease dataset. Trans-
fer learning was used to initialize each model



Table 1: Overview of rice viral diseases, including their causes, symptoms, and impact.

Disease Name Cause Description Affected Plant Part
Healthy None Normal green leaves with no disease symp- Whole Plant
toms
Bacterial Blight Bacterial  Yellowish-brown streaks on leaves, leading to  Leaf
wilting and drying
Neck Blast Fungal Collapse and decay of the neck area, affecting  Panicle
grain formation
Leaf Scald Fungal Browning and wilting of leaf tips; reduced Leaf
vigor
Narrow Brown Leaf Spot  Fungal Narrow, elongated brown lesions on leaves; Leaf
leads to leaf death
Leaf Smut Fungal Dark, smutty spores on leaves; affects photo- Leaf
synthesis
Leaf Blast Fungal Gray-centered lesions with brown borders, af- Leaf
fecting plant growth
Sheath Blight Fungal Oval, water-soaked lesions on leaf sheaths, Leaf Sheath, Leaf
leading to plant lodging
Brown Spot Fungal Small brown spots with yellow halos, reducing  Leaf, Grain
grain quality
Hispa Parasitic =~ Small brown spots with yellow halos, reducing Leaves
grain quality
Tungro Virus Stunted growth and yellow-orange discol- Leaves, Whole Plant
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Figure 1: Overview of all the datasets before cleaning. The data consists of 11 types of rice disease,

including healthy samples.

with pre-trained ImageNet weights, enabling
the knowledge learned from large-scale im-
age classification to be adapted to the agricul-
tural domain [18]. We then fine-tuned all lay-
ers of EfficientNet-B0O, DenseNet-121, and Mo-
bileNetV2 on our dataset. Each model was
trained for 20 epochs with early stopping crite-
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ria to prevent overfitting. This fine-tuning pro-
cess enabled the networks to adapt to the spe-
cific visual features of rice diseases while reduc-
ing training time and computational cost.
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Figure 2: Image preprocessing pipeline used in the models.

4 Experimental results and analysis

This section mainly focuses on the empirical
study of the proposed method.

4.1 Evaluation metrics

To evaluate the performance of the proposed
method, we used four standard classification
metrics, such as Accuracy, Precision, Recall
(Sensitivity), and F1-score.

Accuracy measures the overall proportion of
correctly classified samples and is defined as:

TP+TN
TP+TN+ FP+ FN

Accuracy = (1)
where TP, TN, FP, and F'N denote true pos-
itives, true negatives, false positives, and false
negatives, respectively.

Precision reflects the classification accuracy
of the classifier, indicating all samples predicted
to be positive examples. The proportion of cor-
rectly predicted samples.

TP

—_— 2
TP+ FP @

Precision =

Recall reflects the recall ability of the classi-
fier, indicating that all positive samples are cor-
rectly predicted in the sample proportion tested.

TP

Recall = 75 TN

3)

F1-score is the harmonic mean of Precision
and Recall, providing a balanced measure of
both metrics:

Pl 2 x Precision x Recall

“)

Precision + Recall

4.2 Experimental dataset

The experiments were conducted using the pro-
posed model applied to the rice disease dataset.
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The dataset was divided into training, valida-
tion, and testing subsets with a ratio of 7:2:1.
This split was applied across all seven categories
to ensure balanced representation. As a result,
70% of the samples (12,250 images) were used
for training, 20% (3,500 images) for validation,
and the remaining 10% (1,750 images) for test-
ing. This stratified partitioning provided suffi-
cient samples in each category for effective train-
ing and evaluation.

4.3 Results and analysis

All experiments were implemented in Python
(3.10.11) using TensorFlow GPU 2.10 with
CUDA 12.8.0 acceleration. Training was con-
ducted on a system equipped with an AMD
Ryzen 7 6800H CPU, an NVIDIA RTX 3060
GPU (6 GB), and 16 GB of RAM. The models
were trained using the Adam optimizer with a
learning rate of 0.0001 and a batch size of 32
for a total of 30 epochs. Specifically, 10 epochs
were used for initial training followed by 20
epochs of fine-tuning. Sparse categorical cross-
entropy loss was employed to optimize multi-
class classification across the seven rice disease
categories. The detailed software and simulation
parameters are summarized in Table 2.

4.3.1 Models performance

As summarized in Table 3, the ensem-
ble model outperformed all individual CNNs,
achieving the highest accuracy, precision, recall,
and F1-score (0.96). Table 4 further shows that
this advantage extended across nearly all dis-
ease classes, with particularly strong results for
Sheath Blight and Bacterial Blight (F1-scores of
0.98), while reducing errors in more challenging
classes such as Brown Spot and Healthy.

* EfficientNet-B0 achieved the highest
single-model validation accuracy 0.95. Its
confusion matrix (Figure 4a) shows high
true positives for Bacterial Blight (240),



Table 2: Simulation software and parameters.

Software/Parameters Value

Operating System Windows 11, 64-bit

Programming Language

Python version = 3.10.11, TensorFlow-GPU = 2.10

CPU Ryzen 7 6800H
GPU NVIDIA RTX 3060 (6GB)
RAM 16 GB
Batch Size 32
Optimizer Adam
Learning Rate 0.0001
Epochs 30 (10 initial trainings + 20 fine-tuning)

Table 3: Evaluation of the ensemble model’s overall performance on the test set.
Model Accuracy Precision Recall F1-score
EfficientNet-B0 0.95 0.95 0.95 0.95
DenseNet-121 0.93 0.92 0.92 0.92
MobileNetV2 0.90 0.87 0.88 0.87
Ensemble Model 0.96 0.96 0.96 0.96

Healthy (237), and Sheath Blight (245).
Misclassifications included eight Brown
Spot instances labeled as Leaf Blast and ten
Healthy samples classified as Hispa. The
classification heatmap (Figure 3a) reports
precision, recall, and Fl-scores between
0.90 and 0.98.

* DenseNet-121 obtained the second-highest
accuracy 0.93. As shown in Figure 4b,
it correctly identified most Sheath Blight
(244) and Healthy (231) samples, but mis-
classified 16 Brown Spot images as Bac-
terial Blight and eight as Leaf Blast. The
heatmap Figure 3b confirms strong results
for Sheath Blight and Tungro (F1 = 0.96),
while Brown Spot lagged (F1 = 0.90).

* MobileNetV2 achieved an accuracy of
0.90. Its confusion matrix (Figure 4c)
shows correct predictions for Sheath Blight
(239) but notable errors, such as 38 Healthy
samples labeled as Hispa and 22 Leaf Blast
samples as Brown Spot. The heatmap (Fig-
ure 3c) shows an F1 score of 0.87, with
strong results for Sheath Blight 0.95 and
Tungro 0.96, but lower performance on
Healthy (0.81) and Hispa 0.84. These find-
ings illustrate MobileNetV2’s trade-off be-
tween computational efficiency and predic-
tive accuracy, relevant for mobile deploy-
ment scenarios.

* Ensemble learning model combined
EfficientNet-B0O, DenseNet-121, and Mo-
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bileNetV2 using soft voting. As shown
in Figure 4d, it achieved balanced results
with minimal misclassifications (e.g., one
sample of bacteria blight was classified
as brown spot, and one healthy sample
was classified as hispa). The heatmap
(Figure 3d) indicates consistently high
precision 0.91-0.99 and recall 0.90-0.99,
leading to per-class F1 scores between 0.90
(Brown Spot) and 0.98 (Sheath Blight).
These results confirm that the ensem-
ble delivers the most robust and stable
performance in all categories.

4.3.2 Training and validation visualization

Figure 5 shows the comparison of the accu-
racy of all three models, including EfficientNet-
BO, DenseNet-121, and MobileNetV2 of train-
ing and validation loss.

During training, as shown in Figure 5a and
Figure 5b, EfficientNet-BO consistently achieved
the strongest results among the evaluated mod-
els. It reached approximately 95% training ac-
curacy by the final epochs and maintained the
lowest training loss, indicating its effectiveness
in capturing complex patterns within the dataset
without overfitting. DenseNet-121 also demon-
strated robust learning behavior, showing steady
improvements in accuracy alongside a decreas-
ing loss curve. Although its loss values were
slightly higher than those of EfficientNet-BO0, the
dense connectivity of its layers supported eftec-
tive feature reuse and efficient learning of chal-
lenging patterns. In contrast, MobileNetV2 ex-
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Figure 3: Heatmaps of the classification reports for individual models and the ensemble model.
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Table 4: Fl1-scores of each model across all disease classes, with the ensemble model demonstrating the
most balanced performance.

Disease EfficientNet-B0 DenseNet-121 MobileNetV2 Ensemble Model
Bacterial Blight 0.96 0.94 0.88 0.98
Brown Spot 0.93 0.90 0.85 0.93
Healthy 0.94 091 0.81 0.93
Hispa 0.95 0.92 0.84 0.94
Leaf Blast 0.94 091 0.86 0.93
Sheath Blight 0.98 0.96 0.95 0.98
Tungro 0.96 0.96 0.96 0.96
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Figure 4: Confusion matrices of the individual models and the ensemble model on the test set: (a)
EfficientNet-BO, (b) DenseNet-121, (c) MobileNetV2, and (d) Ensemble Model. The ensemble demon-
strates fewer misclassifications.

hibited a slower increase in training accuracy and ing their ability to generalize to unseen data.
a higher loss, especially during the initial epochs. EfficientNet-BO again achieved the strongest re-

Figure 5c¢ and Figure 5d present the valida- sults, maintaining the highest validation accu-
tion accuracy and loss for each model, illustrat- racy and the lowest validation loss. This consis-
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tency across both training and validation phases
confirms its robustness and ability to capture
complex patterns without overfitting. DenseNet-
121 displayed a similar trend, attaining com-
mendable validation accuracy and a gradual de-
crease in validation loss. These results demon-
strate its capacity to generalize effectively to new
data while maintaining stable learning dynam-
ics. In contrast, MobileNetV2 performed well
but lagged behind the other models in valida-
tion accuracy and showed a higher validation
loss, mirroring its training behavior. This out-
come reinforces that MobileNetV2’s design pri-
oritizes computational efficiency over represen-
tational depth, making it suitable for lightweight
deployment but less optimal for highly complex
classification tasks without further fine-tuning or
architectural adjustments.

Overall, the training and validation curves
highlight the strengths and weaknesses of in-
dividual CNNs, confirming EfficientNet-BO as
the most reliable base model, DenseNet-121
as a stable alternative, and MobileNetV2 as a
lightweight but less expressive option, further
justifying the use of an ensemble strategy to
achieve balanced and robust performance.

5 Discussion

The experimental results demonstrate that CNN's
are effective for rice disease detection, with
EfficientNet-BO and DenseNet-121 showing
strong performance, and the ensemble model
further improving overall robustness. In this sec-
tion, we will discuss key observations, practical
implications, and limitations of our work.

EfficientNet-BO consistently achieved the
highest accuracy among the single models 95%,
reflecting its efficient scaling and ability to
capture complex visual features even in rela-
tively lightweight configurations. DenseNet-
121 followed closely 92%, leveraging dense
connections to promote feature reuse, which
helped in capturing subtle lesion characteristics.
MobileNetV2, while computationally efficient
and suitable for mobile deployment, performed
lower 87% due to its reduced representational
capacity. This highlights the trade-off between
computational efficiency and classification accu-
racy, which is critical when selecting models for
field deployment.

The ensemble model achieved the best over-
all accuracy of 96%, outperforming all individ-
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ual CNNs. Its strength lies in combining the
complementary decision boundaries of different
models, which reduces the misclassification of
visually similar diseases, such as Brown Spot vs.
Leaf Blast and Healthy vs. Hispa. These confu-
sions were evident in the confusion matrices of
the individual models, but significantly reduced
in the ensemble predictions.

Despite promising results, some limitations
remain. First, our dataset was restricted to
seven categories, while rice crops are affected
by a broader range of diseases. Extending the
dataset to include additional disease types would
improve generalizability. Second, the dataset
balancing was achieved through undersampling,
which reduced diversity in some classes. It is
important to note that this balancing process did
not involve artificial data generation or oversam-
pling. As described in Section 3.1 (Data Acqui-
sition), we applied undersampling by reducing
the number of images in overrepresented classes
to achieve an equal distribution of 2,500 samples
per class, consisting of approximately 1,700 field
background and 800 white background images.
This approach ensured that each category con-
tributed equally to training without introducing
synthetic samples. However, undersampling in-
herently reduces data diversity, which may affect
model generalization. Future work will explore
advanced data augmentation and class-weighted
learning strategies to preserve diversity while
maintaining balance. Additionally, further verifi-
cation revealed signs of model overfitting, likely
caused by the limited dataset size and the use of
a single dataset split (70/20/10) without cross-
validation or an external test set. Although en-
semble learning was adopted to improve robust-
ness and reduce the risk of overfitting, its effec-
tiveness is still constrained when data diversity
is limited. While several techniques, such as
data augmentation, dropout, and early stopping
were applied to reduce overfitting, these mea-
sures were insufficient to fully prevent it.

Future work will incorporate k-fold cross-
validation, larger and more diverse datasets, and
external validation to ensure better model gen-
eralization and reliability. Third, while the
ensemble achieved strong results, its inference
speed may be slower compared to lightweight
single models, requiring further optimization
for real-time deployment. Moreover, exploring
optimization-based ensemble strategies, such as
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Figure 5: Comparison of the three models, EfficientNet-B0O, DenseNet-121, and MobileNetV2 using
training and validation metrics: (a) Training accuracy, (b) Training loss, (c) Validation accuracy, and (d)

Validation loss.

the Ensemble Genetic Algorithm and Convolu-
tional Neural Network (EGACNN) [19], may
provide an effective way to automatically opti-
mize model combinations and improve general-
ization. This represents a promising direction for
integrating metaheuristic optimization with deep
learning in agricultural image analysis.

6 Conclusion

This paper presented a deep learning framework
for detecting rice diseases using convolutional
neural networks. By integrating EfficientNet-
B0, DenseNet-121, and MobileNetV2, the en-
semble model achieved superior performance,
with an overall accuracy and F1-score of 96%.
Compared to individual CNNs, the ensemble ap-
proach reduced misclassifications between visu-
ally similar diseases, demonstrating greater ro-
bustness and reliability for field use.

Beyond accuracy, this work emphasizes the
development and evaluation of an effective deep
learning—based ensemble model for rice disease
classification. The findings highlight the poten-
tial of combining multiple CNN architectures to
enhance performance and provide a foundation
for future research in precision agriculture.
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However, some limitations remain. The
dataset used in this study was limited to seven
categories and balanced through undersampling,
which reduced sample diversity. Future research
should expand to a broader range of rice dis-
eases, adopt advanced augmentation or genera-
tive techniques for data balancing, and explore
optimization-based ensemble methods such as
the Ensemble Genetic Algorithm and Convolu-
tional Neural Network (EGACNN) to further im-
prove model generalization and robustness.

In conclusion, the proposed ensemble ap-
proach represents a promising step toward prac-
tical, Al-driven solutions for precision agricul-
ture. With further development and refinement,
such models have the potential to support more
accurate and reliable plant disease management,
ultimately contributing to sustainable agricul-
tural practices and global food security.
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Abstract

People with hearing impairments often face chal-
lenges in both social interactions and their lan-
guage development, especially when they com-
municate with individuals who have little or no
knowledge about sign language. Although sign
language research has rapidly progressed we still
need to working on for different linguistic across
countries. This paper provides the preliminary
study of Khmer Sign Language (KSL) recogni-
tion with different neural networks approaches.
We also compare the performance where we
train with RGB video frame and pose keypoint
extraction to find accuracy yet computing effi-
cient approach. We collected a dataset consist-
ing of 6 deaf participants, featuring 20 signs
across 580 videos, with each video recorded at
a frame rate of 30 frames per second. The
dataset was collected using digital cameras and
smartphones in different environments to ensure
the model’s robustness across different devices
and conditions. We trained several architec-
tures and show that SlowFast achieved the best
performance with 92.81% accuracy, 92.50% F1,
92.81% recall, and 93.57% precision. The key-
point pipeline with R3D-18 also performed com-
petitively (92.05% accuracy, 92.56% F1, 92.05%
recall, 95.21% precision), suggesting a promis-
ing trade-off for scenarios with tighter computed
budgets. For this research has shown that Slow-
Fast with RGB frame provide higher accuracy
while pose keypoint show the better scalability
for training. For the future work will expand the
dataset and class number improve accuracy and
generalizability, especially in real-world scenar-
i0s.

Keywords: Sign Language Recognition, Trans-
former Model, Video Vision Transformer Model,
SlowFast, R3D-18, LSTM, Bi-LSTM, GRU, Ve-
locity features, Low-resource dataset
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1 Introduction

Sign language serves as an essential means of
communication for people who are deaf or hard
of hearing, enabling interaction and social inte-
gration both within their communities and with
hearing individuals who understand sign lan-
guage. Globally, it is estimated that more than
70 million people experience deafness, with
more than 80% residing in developing countries,
where access to resources and support is often
limited [1, 2]. In 2020, approximately 1,700
newborns were born deaf, further highlighting
the global prevalence of hearing loss [3]. In
Cambodia, of a total population of 16 million
people, there are 1.5 million deaf and hearing
impaired. Approximately 3.5% of 1.5 million
deaf people are profoundly deaf [4]. These fig-
ures highlight the critical importance of research
aimed at improving communication and acces-
sibility for deaf and hard-of-hearing individuals
worldwide.

However, in Cambodia, support for the deaf
for accessibility and communication in edu-
cation and employment is limited. Although
Krousar Thmey provides education for hearing-
impaired children and the Maryknoll Deaf De-
velopment Program offers training for adults,
most deaf individuals lack access to essential ser-
vices [5]. In addition, another main challenge is
when students start to learn new words at school
and their family members and relatives cannot
understand that new sign language vocabulary.
In 2019, children with disabilities were three
times less likely to attend school than other chil-
dren [6], highlighting the challenges facing the
deaf community and the urgent need for tech-
nologies to improve communication and a better
education approach.

We aim to contribute to the community by
providing (i) better communication and sup-
port for self-learning, we propose sign language



Table 1. Dataset Overview

Attribute Value

Number of Videos 580

Participants 6 deaf participants
Location NISE

Number of Signs 20

Frame Rate (fps) 30

Resolution (pixels) 1920x1080

Recording Devices

Digital cameras and smartphones

recognition by providing accurate recognition,
which students can use to acquire new sign
language independently to help this community
with a better education experience and social in-
tegration, and (ii) compare different techniques
for effective training and results by choosing
two different approaches. Model training with
RGB frame video with several architectures such
as the SlowFast network [7], Channel Sepa-
rated Convolutional Networks (CSN) [8], ViViT
[9], and another approach pose keypoint extrac-
tion with mediapipe with velocity techniques
and then apply the deep learning model such as
LSTM [10], Bi-LSTM [11], and GRU [12] for
better comparison of effective training applied to
the larger dataset.

We collected our own data set that starts with a
small data set from 6 deaf participants consisting
of 20 signs with 580 videos, captured in different
environments and lighting conditions to reflect
real-world scenarios.

The paper is structured as follows. Sec-
tion 2 provides a review of related work in
sign language recognition, Section 3 outlines
the methodology used for KSL recognition, Sec-
tion 4 presents the experimental setup, Section
5 presents the results, and Section 6 concludes
with a discussion of the findings and potential
future directions for research.

2 Related Work

Sign language recognition has gained significant
attention due to its potential to bridge the com-
munication gap for deaf and hard-of-hearing in-
dividuals. The Word-Level American Sign Lan-
guage Dataset (WLASL), introduced by Li et
al. [13], stands as the largest word-level ASL
dataset, featuring over 21,000 video samples
across 2,000 glosses performed by 119 sign-
ers. This dataset’s inclusion of significant inter-
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signer variability and annotations for dialectal
variations has positioned it as a benchmark for
large-scale word-level sign recognition.

In recent years, advancements in machine
learning and deep learning, particularly with
transformer-based architectures like ViViT [9]
and spatiotemporal models like the SlowFast
Network, have enabled significant progress in
the computer vision field [7, 14, 15].

The SlowFast network has emerged as a
powerful architecture for advancing sign lan-
guage recognition tasks. Ahn [16] leveraged
a two-pathway SlowFast network for Continu-
ous Sign Language Recognition (CSLR), intro-
ducing Bi-directional Feature Fusion (BFF) and
Pathway Feature Enhancement (PFE) to achieve
state-of-the-art performance on datasets such as
PHOENIX14 [17] and CSL-Daily [18]. Hassan
[19] extended the application of SlowFast Net-
works to dynamic sign language recognition on
the WLASL dataset and achieved a 79.34% in
top-1 accuracy. Similarly, Radhakrishnan [20]
demonstrated the effectiveness of the SlowFast
model in word-level sign language detection on
the MSASL dataset [21], achieving a 92.35% in-
crease in top-1 accuracy. These studies highlight
the versatility and robustness of SlowFast archi-
tectures across diverse sign language recognition
tasks.

In 2018, Tran et al. proposed another ap-
proach for video classification called Channel-
Separated Convolutionals (CSN) [8]. A new
method was presented to add factorizing on the
channel, while factorizing simply on the spatial
and temporal dimensions. This approach was
evaluated on Kinetics-400 dataset [22], achiev-
ing 76.6% in top-1 accuracy without any pre-
trained dataset applied. By applying pre-trained
dataset with SportlM [23] and evaluate on the
same data, the CSN model increased the top-1



accuracy by 1.8%.

In 2020, Camgoz et al. [24] proposed a
transformer-based model joint end-to-end sign
language recognition and translation, using Con-
nectionist Temporal Classification (CTC) loss.
Their approach achieved state-of-the-art re-
sults on the RWTH-PHOENIX-Weather-2014T
dataset [25], improving both recognition and
translation accuracy, with a significant boost in
BLEU scores for translation tasks. In the same
year, De Coster et al. [26] proposed a method for
Sign Language Recognition using Transformer
Networks. They combine OpenPose-based fea-
ture extraction with end-to-end feature learn-
ing using CNNs for sign language recognition
[27]. Applying the multi-head attention mecha-
nism [28] from transformers, they recognize iso-
lated signs in the Flemish Sign Language cor-
pus, achieving 74.7% accuracy on a 100-class
vocabulary, significantly outperforming previous
methods. Three years later, Kothadiya et al. [29]
proposed SIGNFORMER, a Vision Transformer
model for static Indian sign language recogni-
tion. It divides signs into positional embedding
patches processed by a transformer with self-
attention layers. The model achieved 99.29%
accuracy with minimal training epochs, out-
performing convolution-based architectures and
showing effectiveness under various augmenta-
tions.

Keypoint-based sign language recognition has
been developing by utilizing 2D/3D landmarks
(hand, face, and body) that emphasize motion
dynamics and are essential to the recognition
task. For Indian SLR, Subramanian et al. [30]
presented a MediaPipe-optimized GRU (MOP-
GRU) in 2022. After being normalized and de-
noised, holistic landmarks are modeled using a
modified GRU cell whose update gate is con-
ditioned by the reset gate. This results in sig-
nificant gains over the video corpus’s vanilla
LSTM/GRU baselines. This study has demon-
strated that recurrent design on posture sequence
can compete with more complex vision back-
bones while maintaining real-time compatibility.

Building on similar pose-first pipelines,
Bhadouria et al. present an LSTM-based
SLR system that ingests MediaPipe land-
marks extracted from videos and reports
strong recognition with a compact temporal
model—underscoring that recurrent architec-
tures remain competitive when features are
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cleanly factorized into trajectories of key-
points [31].

3 Methodology

3.1 Dataset Collection

To work on the Khmer Sign Language Recogni-
tion task, a small corpus was developed for the
training and evaluation. The dataset consists of
580 videos recorded by 6 deaf participants at the
National Institute for Special Education (NISE).
The signs represent everyday concepts and ac-
tions, including directional terms, locations, and
objects commonly encountered in daily life. For
better organization, the terms can be grouped
into categories and listed as follows. Under Lo-
cations and Actions, we begin with ”"Where”,
”When”, "Market”, ”Buy”, and “Location”. In
the Directions category, we list “Left”, “Right”,
”North”, and ”South”. Next, under Objects, we
have “Pen”, ”Blue Pen”, "Red Pen”, “Pencil”,
”Book”, ”Line”, and “Eraser”. Lastly, in the
People category, we list "Teacher”, ”Director”,
”Female Director”, and ”Deputy Director”. This
structure emphasizes the most important terms
first, with clear grouping and Khmer translations
in parentheses for better understanding.

The data was recorded at 30 frames per sec-
ond with a resolution of 1080 x 1920 pixels, us-
ing both cameras and smartphones across vari-
ous environments and lighting conditions. This
diverse dataset is well-suited for training and
evaluating sign language recognition models in
real-world scenarios. A sample of the proposed
dataset is shown Table 1.

3.2 RGB video frame with Neural Network
Approaches

Figure 2 illustrates the Khmer Sign Language
Recognition System workflow from video data
using the Sign Recognition models (CSN, Slow-
Fast and ViViT). The process begins with the
input of raw video data, which undergoes pre-
processing steps to prepare it for model in-
put. These steps include frame extraction, resiz-
ing, and normalization to ensure that the video
frames are consistent in size and values before
they are passed to the model. Once the prepro-
cessing was done, it fed processed data into the
recognition models. The extracted features are
then used for Classification, where the model as-
signs a specific label (sign) based on the learned
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Figure 1. Sample Video Khmer Sign Language Dataset

patterns from the KSL dataset. This stage gener-
ates the prediction for the input video, which is
the recognized sign. Finally, the output from the
classification stage is presented as the recognized
sign, corresponding to the KSL sign, providing
valuable feedback for the user. For KSL recog-
nition tasks, 4 models were selected for the ex-
periment: Video Vision Transformers (ViViT),
SlowFast Network, and Channel-Separated Con-
volutional Networks (CSN), and R3D-18.

3.2.1 Video Vision Transformers (ViViT)

This model proposed by Arnab et al. [9], ap-
ply transformer architectures to video data by
dividing video frames into spatial patches and
learning long-term temporal dependencies. This
method surpasses convolutional approaches in
datasets like Kinetics-400 due to its attention-
based mechanism. ViViT’s ability to model
complex spatial-temporal interactions makes it
suitable for capturing the nuances of sign ges-
tures.

3.2.2 The SlowFast network

Introduced by Feichtenhofer et al. [7], pro-
cesses video inputs at two different frame
rates—one fast pathway for motion-sensitive
features and one slow pathway for fine-grained
spatial details. This dual-pathway architecture
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excels in capturing both dynamic and static ele-
ments of actions, making it particularly effective
for sign language gestures that combine subtle
hand movements with facial expressions. Re-
cent work demonstrates its strong performance
on datasets such as Charades and AVA, high-
lighting its adaptability to video-based tasks.

3.2.3 Channel-Separated Convolutional
Networks (CSN)

This neural network has proposed by Tran et
al. [8] which designed for tasks like video anal-
ysis. In these networks, the layers that pro-
cess information are split into two types: one
type focuses on mixing information across dif-
ferent channels (like colors or features) without
looking at the surrounding space, and the other
type focuses on analyzing patterns in the local
space (like shapes or movements) without mix-
ing channel information. This separation makes
the network more efficient and specialized. Tra-
ditional networks combine both tasks in one step,
but CSNs handle them separately. This idea has
been proposed in Xception [32] and MobileNet
[33] for image classification and R(2+1)D [34]
video classification, but CSNs specifically aim to
separate channel-related processing from spatial
and temporal processing (movement-related).



3.2.4 ResNet 3D (R3D)

3D Residual Networks (R3D), proposed by
Hara et al. [35] are another version of the 2D
ResNet design [36], are CNNs for video that
replace 2D spatial operations with 3D spatio-
temporal kernels (time x height x width). In
R3D, each residual block jointly models ap-
pearance and motion in a single 3D convolu-
tion while preserving skip connections, allow-
ing deeper networks to train stably. This lets the
model learn direct spatio-temporal features from
short clips rather than single frames, which is ef-
fective for action and sign-language recognition.
Unlike factorized designs such as R(2+1)D [37],
which split spatial and temporal processing into
separate steps, R3D performs them together in
one operation—yielding a strong, simple base-
line. A common lightweight instance is R3D-18,
widely used as a backbone in this research.

3.3 Pose Key Point with Deep Learning
Approach

3.3.1 Training Process

Similarly, from the previous training to train-
ing with the keypoint process with deep learning
models, we start from the video frame. There
are some slight differences in the preprocessing
dataset step: we do all frame extraction from the
video and the sampling from thoes frames. Then
we will apply the keypoint extraction with medi-
apipe [38]. In order to capture the movement of
the keypoint for each word, we apply the veloc-
ity technique [39]. The next step is the training
process with deep learning models (LSTM, Bi-
LSTM, and GRU) and end with the evaluation
method.

3.3.2 Long Short-Term Memory (LSTM)

The model achitecture was introduced by
Hochreiter and Schmidhuber in 1997 [10], the
canonical origin of LSTM. It is a gated RNN
that combats vanishing/exploding gradients by
adding a persistent cell state and three gates (in-
put, forget, and output). With this can help
the model carry information over long time
spans—crucial for signs whose meaning de-
pends on motion over many frames.

3.3.3 Bidirectional Long short-Term
Memory (Bi-LSTM

A bidirectional RNN [11] processes the se-
quence in forward and backward time and con-
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catenates the two hidden states, giving access to
past and future context at each frame. The prin-
ciple was also introduced by Schuster and Pali-
wal in 1997; swapping the vanilla recurrent cell
for LSTM yields Bi-LSTM, now standard for se-
quence labeling and SLR.

3.3.4 Gated Recurrent Unit (GRU)

This model is a lighter gated RNN [12] that
merges the input/forget logic into update and re-
set gates—fewer parameters than LSTM, often
similar accuracy. It was introduced in the RNN
Encoder-Decoder work by Cho et al. (2014) and
Chung et al. (2014) and was competitive with
the LSTM model as well.

3.4 Evaluation Matrice

After the classification task to show the accuracy
of each classification model, this task should be
evaluated with evaluation matrices. In this pa-
per, we choose the evaluation suitable for clas-
sification tasks such as , Precision, Recall, and
F1-Score, Accuracy [40].

Let TP, FP, TN, and F'N denote true pos-
itives, false positives, true negatives, and false
negatives, respectively.

3.4.1 Precision

The precision is the ratio TP/(T'P + FP)
where T'P is the number of true positives and
F'P the number of false positives. The precision
is intuitively the ability of the classifier not to la-
bel as positive a sample that is negative.

TP

—_— 1
TP+ FP M

Precision =

3.4.2 Recall

The recall is the ratio TP/ (T P+ F'N)) where
TP is the number of true positives and fn the
number of false negatives. The recall is intu-
itively the ability of the classifier to find all the
positive samples.

TP

ReC&H = m

2

3.4.3 F1-Score

The F1 score can be interpreted as a harmonic
mean of the precision and recall, where an F1
score reaches its best value at 1 and worst score
at 0. The relative contribution of precision and
recall to the F1 score are equal.

2TP

Fl == .
2rP+ FP+ FN
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Figure 2. Flow Chart Frame Video Training Approach

3.44 Accuracy

In multilabel classification, accuracy function
computes subset accuracy: the set of labels pre-
dicted for a sample must exactly match the cor-
responding set of labels in y_true.

N
1
Subset Accuracy = N g Kyi=yi), @
i=1

where y; and y; are the predicted and true label
sets for sample ¢, and #(-) is the indicator func-
tion.

4 Experimental Setup

4.1 Data Pre-processing and Augmentation

We resize the resolution of all original video
frames such that the diagonal size is 224 pix-
els for ViViT and 256 pixels for SlowFast, R3D-
18, and CSN. For SlowFast training, R3D-18,
and CSN, we center crop and apply normaliza-
tion with the mean value of [0.45, 0.45, 0.45]
and standard derivation value of [0.225, 0.225,
0.225]. For ViViT training, we randomly crop
224x224 pixels and apply normalization and ran-
dom horizontal flipping. Note that, we randomly
selected 30 frames.

4.2 Implementations Detail

All the experiments are implemented in Py-
torch and pre-trained weight with Kinetics-400
datasets [22] are used for all models. We train
all the models with Adam Optimizer [41]. Cross-
Entropy loss function [42] is used in our experi-
ments. All the models are trained with 50 epochs
on each subset.

40

We split the sample of our dataset into the
training and testing following the ratio of 70%
and 30% of the total sample, respectively. To
make sure the dataset is generalize for both train-
ing and testing set by manually for each class.

5 Result and Discussion

Table 2 indicates the performance of the two dif-
ferent approaches working on KSL 20 classes
of the dataset: (i) RGB frame video architec-
ture (SlowFast, CSN, ViViT, R3D-18), (ii) the
pose keypoint with the sequence model (LSTM,
Bi-LSTM, GRU, ResNet-3D-18). The evaluated
methods are precision, recall, F1-score, and ac-
curacy.

On the RGB side, SlowFast emerged as the
top performer, achieving an accuracy of 92.81%
and an Fl-score of 92.50%. Its success can
be credited to its unique dual-pathway architec-
ture, which processes both fast and slow tem-
poral features simultaneously. This design al-
lows it to capture fine-grained motion details
while also understanding broader temporal pat-
terns, making it particularly well-suited for the
complexities of sign language recognition. CSN
came in second, with an accuracy of 82.87%
and an Fl-score of 81.20%. While its channel-
separated convolution approach effectively re-
duces redundancy and improves feature extrac-
tion, it falls short of SlowFast’s performance
because it lacks the explicit temporal model-
ing capabilities that make SlowFast so effective.
ViViT, a transformer-based model, achieved an
accuracy of 75.13%, showing that while trans-
formers are powerful for processing sequences,



Table 2. The results of KSL recognition using different neural network approaches.

Architecture Precision Recall F1-Score Accuracy
RGB Video—Based Models

CSN 86.00% 82.87% 81.20% 82.87%
SlowFast 93.57% 92.81% 92.50% 92.81%
ViViT 82.68% 75.13% 75.31% 75.13%
R3D-18 88.35% 84.09% 83.72% 84.09%
Pose Keypoint—Based Models (and Fusion)

Pose Keypoint + LSTM 90.00% 88.00% 87.00% 88.00%
Pose Keypoint + Bi-LSTM 87.00% 86.00% 86.00% 86.00%
Pose Keypoint + GRU 84.00% 80.00% 80.00% 81.00%
Pose Keypoint + R3D-18 95.21% 92.05% 92.56 % 92.05%

they may not be as effective for recognizing fine-
grained motion in sign language. This could
be because transformers typically require large
amounts of data to perform well and lack the
built-in spatial and temporal processing advan-
tages of CNN-based models.

For the pose-keypoint approach, models in-
gest normalized joint trajectories (with velocity)
and focus on explicit motion cues while being ro-
bust to background and lighting. LSTM out per-
form the accuracy result amount of RNNs with
an accuracy of 88% and 87% of F1 score. fol-
lowed by Bi-LSTM (accuracy of 86% and 86%
with F1 score) and GRU accuracy of 81% and
80% of F1 score. This result suggests that mak-
ing motion explicit via velocity helps, and that
a well-regularized Bi-LSTM can be competitive
when clips provide sufficient context.

The best overall for the performance is pose
keypoint with ResNet-3D-18, which come up
with an accuracy of 92.05% and an F1 score of
92.56% althought it is slighly beaten SLowFast
on F1 score, with the precision of 95.21% show-
ing that it has the fewest false positives.

These results highlight that models explicitly
designed for motion modeling, such as Slow-
Fast with RGB video, outperform others by effi-
ciently capturing both spatial and temporal fea-
tures in sign language recognition tasks. How-
ever, pose keypoint with ResNet-3D-18 also per-
forms strongly by combining motion with lim-
ited appearance cues; in our summary (Table 3),
this configuration attains the best F1 with the
highest precision while keeping medium train-
ing and inference cost. In resource-constrained
or cluttered backgrounds, the Pose Keypoint
+ LSTM/Bi-LSTM/GRU family is attractive:
it models motion only, is low/low for training
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and inference compute, and is notably robust
to background, though it may miss appearance-
dependent distinctions (e.g., subtle hand tex-
ture or mouthing). RGB + R3D-18 remains a
solid, balanced baseline (medium train/infer) but
lacks the dual-rate temporal pathway that gives
SlowFast its edge. Finally, CSN/ViViT capture
both motion and appearance but typically require
medium/high compute and careful data/tuning;
when such resources are available, they can be
highly competitive. Overall, the choice hinges
on data scale, hardware budget, and how much
appearance information is needed; a pragmatic
path is to start with keypoints (for efficiency and
robustness) and scale to RGB+3D CNNs as re-
sources permit.

6 Limitation

This experiment is still working on the small
dataset with the limitation of the signer and vari-
ety of the environment. For the first experiment,
we start working on the splitting, which follows
the 70/30 train-test protocol rather than a signer-
independent schema, which can lead to overesti-
mating performance on an unseen signer.

We did not include a separate validation set
or K-fold cross-validation, which could lead to
suboptimal hyperparameters and early stopping.
For the model we rely on the kinetic-400 pre-
training and a single keypoint encoding (Medi-
aPipe landmarks), and for evaluation we only
apply accuracy, precision, recall, and F1 score,
without per-class evaluation analysis and other
robustness techniques.

7 Conclusion

To conclude, among all the experiments that
we have conducted, the pose keypoint with



Table 3. Model families, compute, and behavior.

Approach Captures Train Infer Notes

RGB Video + SlowFast Motion + appearance  High High Strong RGB-only

RGB Video + R3D-18 Motion + appearance ~ Med Med Solid baseline

CSN/ ViViT Motion + appearance ~ Med/High  Med/High  Needs data/tuning

Pose Keypoint + LSTM/Bi-LSTM/GRU  Motion only Low Low Robust to background

Pose Keypoint + R3D-18 Motion + appearance ~ Med/High Med/High  Best F1; highest precision
the ResNet-3D-18 model performed better for References

Khmer Sign Language recognition, with effec-
tive evidence, even if it was slightly beaten by
the SlowFast model with RGB video. Addi-
tionally, when it comes to increasing the num-
ber of datasets, it will be beneficial for com-
puting resource limitations. Our results demon-
strate the effectiveness of the pose keypoint with
the ResNet-3D-18 in sign language recognition,
achieving an accuracy of 92.05%, an F1 score
of 92.56%, a recall of 92.05%, and a preci-
sion of 95.21%. This work addresses the gap
in KSL recognition and contributes to improv-
ing accessibility and a better learning approach
for the deaf community in Cambodia. To fur-
ther improve the system’s accuracy and adapt-
ability, especially in real-world situations, future
research will investigate expanding the dataset,
adding more sign modifications, and experi-
menting with different model architectures. For
deaf people in Cambodia, the creation of a KSL
recognition system will be very helpful, enabling
improved communication and enhancing educa-
tional opportunities and inclusivity.
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Abstract

People with hearing impairments in Cambodia
often face challenges in daily communication
and learning, especially when others cannot un-
derstand Khmer Sign Language. These diffi-
culties can limit social interaction and access
to education. To address this problem, this re-
search proposes a Khmer Sign Language recog-
nition approach using deep learning to support
better communication and self-learning tools for
the Deaf community. A dataset containing 100
sign classes was collected, with 20 fully an-
notated classes used for training, each includ-
ing 28 to 31 samples recorded in varied envi-
ronments at the National Institute for Special
Educat ion (NISE). The data were processed
into 30 fps and 1920 x 1080 resolution to en-
sure temporal smoothness and clear motion cap-
ture. Two models based on 3D ResNet (R3D-18)
were trained and compared: one using raw RGB
frames and another using keypoints extracted by
MediaPipe. The RGB-based model achieved
88.35% precision, 84.09% recall, 83.72% F1-
score, and 84.09% accuracy. The keypoint-based
model achieved 95.21% precision, 92.05% re-
call, 92.56% F1-score, and 92.05% accuracy,
showing that focusing on body and hand land-
marks improves robustness and generalization
on small datasets. This research provides a foun-
dation for Khmer Sign Language recognition us-
ing limited data. Future work will expand the
dataset, explore more classes, and improve in-
ference for real-time applications while applying
Early-Stopping to prevent overfitting.

Keywords: Khmer Sign Language Recogni-
tion, Deep Learning, 3D ResNet-18, MediaPipe,
Keypoint-based learning

1 Introduction

The Khmer Sign Language is the main mode
of communication for people who are deaf or
hard of hearing in Cambodia. However, lim-
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ited technological support makes it difficult for
deaf people to interact with hearing people un-
familiar with sign language, leading to social
isolation and reduced educational opportunities.
Although organizations such as Krousar Thmey
and the Deaf Development Programme have pro-
vided support, accessible digital tools remain
scarce.

Recent advances in deep learning have led to
significant progress in Sign Language Recogni-
tion (SLR), especially through 3D Convolutional
Neural Networks (3D CNNs) capable of learning
spatio-temporal features from video sequences
[1], [2]. Advanced architectures such as Slow-
Fast [3] and X3D [4] improve motion under-
standing, while Transformer-based models such
as ViViT [5] and Sign Language Transform-
ers [6] achieve strong results through attention
mechanisms. However, these models are based
on large-scale datasets, which are unavailable for
underrepresented languages such as Khmer Sign
Language [7], [8].

To address data scarcity, keypoint-based
methods use pose estimation frameworks such
as MediaPipe to extract skeletal landmarks that
capture sign movement while filtering out back-
ground noise [9], [10]. Combining MediaPipe
with CNN-LSTM or Transformer models has
achieved promising results on small datasets
[11], [12], [13]. Building on these insights,
this research presents a baseline R3D-18 model
trained on RGB and keypoint data to establish
a foundational benchmark for Khmer Sign Lan-
guage recognition.

This research contributes by creating a new
Khmer Sign Language dataset that provides one
of the first structured collections for this lan-
guage. It also establishes a baseline deep learn-
ing model using both RGB and keypoint input,
offering a reference for future studies. The re-
sults and methods can help future researchers
build larger models and improve technologies
that support the Deaf community in Cambodia.



This paper is organized as follows. Section 2
reviews existing research and related work on
Sign Language Recognition and Keypoint-Based
approaches. Section 3 presents the proposed
methodology, including dataset collection, pre-
processing, and model architecture of R3D-18.
Section 4 describes the experimental setup and
evaluation metrics used in this research. Sec-
tion 5 discusses the experimental results and per-
formance comparisons between the RGB and
keypoint-based models. Finally, Section 6 con-
cludes the article and outlines directions for fu-
ture work.

2 Related Work

Research in sign language recognition has ad-
vanced rapidly with deep learning models that
capture spatio-temporal patterns from video
data. Early studies using 3D CNNs such as 3D
ResNet and R(2+1)D demonstrated strong capa-
bilities to model motion dynamics across frames
[11, [2], [14]. Later architectures like SlowFast
[3] and X3D [4] enhanced temporal efficiency
and accuracy, becoming standard baselines for
video classification tasks, including SLR.

Transformer-based models such as ViViT [5]
and Sign Language Transformers [6] further im-
proved recognition through long-range attention,
but their performance depends on extensive la-
beled data. This limits their use in low-resource
settings, where annotated datasets are scarce
[7]-[15]. Consequently, baseline models trained
on small datasets remain essential to establish
feasible starting points for further research and
deployment.

To overcome small-data constraints, keypoint-
based SLR has emerged as an effective ap-
proach, where skeletal landmarks replace full
RGB frames to emphasize motion cues and re-
duce noise. MediaPipe has gained popularity for
its lightweight and real-time extraction of hand,
face, and body landmarks [10]. Recent studies
integrating MediaPipe with CNN-LSTM [12],
Transformer [11], and hybrid networks [16], [13]
show that models driven by landmarks general-
ize better and train faster with limited data, align-
ing with the goal of this research.

3 Methodology

This section describes three main components:
data collection, data annotation, and model se-
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lection. First, the data collection process out-
lines how Khmer Sign Language videos were
recorded and organized. The data annotation
process explains how gestures were labeled and
validated to ensure linguistic accuracy. Finally,
the model selection subsection discusses the 3D
ResNet-18 (R3D-18) [1] architecture used for
RGB and keypoint-based inputs [17], [12], [10],
including its configuration and training parame-
ters.

3.1 Data Collection

A Khmer Sign Language dataset was a task that
was cooperated between Cambodia Academy of
Digital Technology (CADT) and the National
Institute of Special Education (NISE) in Ph-
nom Penh to record the data as videos for this
research. The complete dataset contains 100
classes, but only 20 fully annotated classes were
used to ensure consistency and reliable labels.
The remaining 80 were excluded due to miss-
ing annotations, as unlabeled data could intro-
duce ambiguity and hinder supervised learning.

The videos were recorded in 1920 x 1080
resolution as Full HD at 30 fps with the dig-
ital camera. Although sometimes NISE helps
record videos using the smartphone which might
have slightly different resolution but we used the
tool that helps all videos resolution to be con-
sistency. This resolution was chosen to ensure
clear visualization of finger and hand movements
while keeping a balance between detail and com-
putational cost. A higher frame rate (30 fps)
helps capture smooth temporal motion without
excessive storage usage. Although both cam-
eras and smartphones were used, quality differ-
ences were minimal after preprocessing since all
videos were standardized in resolution and frame
rate.

The 20 annotated signs span four cat-
egories:  Locations and Actions (“Where”,
“When”, “Market”, “Buy”, “Location”), Direc-
tions (“Left”, “Right”, “North”, “South”), Ob-
jects (“Pen”, “Blue Pen”, “Red Pen”, “Pen-
cil”, “Book”, “Ruler”, “Eraser”), and Peo-
ple (“Teacher”, “Director”, “Female Direc-
tor”, “Deputy Director”). Six deaf participants
recorded the signs using cameras and smart-
phones at 1920 x 1080 resolution and 30 fps in
varied environments. A sample of the dataset is
illustrated in Figure 1, and a summary is shown
in Table 1.



Pencil

Buy

Location

Eraser North

Male Director

Deputy Director

Figure 1. Sample of the proposed Khmer Sign Language dataset.

Table 1. Dataset Overview

Total Classes: 100

Classes Used: 20 Annotated
Videos Used: 591 Videos
Participants: 6 Deaf Participants
Location: NISE

Frame Rate: 30 fps

Resolution: 1920 x 1080

Record Device: Camera and Smartphone

3.2 Data Annotation

Data Annotation was conducted manually by
trained experts, with additional validation steps
to ensure the highest level of linguistic accuracy
and consistency. Each video in the dataset was
carefully reviewed and labeled according to its
corresponding sign class, ensuring that it con-
tained a single complete gesture without ambi-
guity or overlap. By including only verified and
fully validated samples, we preserved the in-
tegrity and uniformity of the dataset, which is
particularly crucial when evaluating the perfor-
mance of the baseline model on small datasets.
This meticulous process not only guarantees re-
liable annotations but also provides a solid foun-
dation for reproducible research and meaning-
ful comparisons across different computational
models.
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3.3 3D ResNet-18 (R3D-18)

The R3D-18 model is an extended version of
ResNet-18 that replaces 2D convolutions with
3D ones, allowing it to learn spatial and tem-
poral features of video frames [1]. This abil-
ity is important for Sign Language Recognition,
where hand motion and movement over time
carry meaning. Compared to larger models such
as I3D [2], SlowFast [3], or Transformer-based
networks [5], R3D-18 provides a good balance
between accuracy and efficiency, making it suit-
able for small datasets.

With this lightweight model, it is powerful
enough to learn motion features without over-
fitting the 591-video dataset around 27-31 sam-
ples per class. Its 3D filters capture motion
patterns across 30-frame sequences while keep-
ing the spatial structure clear. Using pre-trained
R3D-18 weights from large video datasets also
improves generalization through transfer learn-
ing.

For the keypoint-based version, the Medi-
aPipe framework was used to extract 543 key-
points from the body, hands, and face, giving the
model simplified inputs that are less sensitive to
lighting or background changes. Previous stud-
ies have shown that such landmark-based fea-
tures work better in small datasets and improve
robustness.

Both the RGB and keypoint models were
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Figure 3. Preprocessing workflow for MediaPipe keypoint input.

trained with the same settings: Adam optimizer
(learning rate le—*), batch size 16, and 5 epochs.
Five epochs were chosen because overfitting ap-
peared beyond that point, giving a good trade-off
between accuracy and training time. The RGB
model achieved 84.09% accuracy, while the key-
point model reached 92.05%, demonstrating that
focusing on landmarks gives better results on
small data. After applying early stopping and
model checkpointing (Figure 6), the keypoint-
based model improved further to 94.32% accu-
racy, 95.43% precision, and 94.28% F1-score.

During training, validation loss was monitored
each epoch. If it did not improve for 5 epochs
(EARLY _STOPPING_PATIENCE = 5), training
was stopped automatically to prevent overfit-
ting. Whenever the validation loss improved,
the model weights (state_dict) were saved in
BEST MODEL_PATH. This process also works
with nn.DataParallel models. Only the weights
were saved, but the optimizer and epoch number
can also be stored if training needs to be resumed
later. The final performance after applying these
methods is shown in Table 4.

4 Experimental Setup

4.1 Data Preprocessing

Each video was resized to 224 x 224 pixels and
normalized to [0, 1]. Two modalities were ex-
plored: RGB, preserving the appearance features
Figure 2; and MediaPipe, extracting 2D keypoint
landmarks for the hands, body, and face Figure 3.
The natural variation in the recording conditions
provided sufficient diversity for model training.

4.2 TImplementation and Evaluation Setup

The experiments were conducted in PyTorch
During early development, models were trained
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for 5 epoch using cross-entropy loss, Adam Op-
timizer (le—*), and a batch size of 16. The
dataset was split into 70%, 15%, and 15% for
training, validation, and testing under a signer-
dependent scheme. This ratio was chosen to
maintain a balanced trade-off between learning
and generalization, providing enough data for
model fitting while keeping unseen samples for
fair evaluation. The RGB inputs were normal-
ized pixel frames, while the keypoint inputs were
coordinate-normalized landmarks.

When applying early stopping and model
checkpointing during extended 14 epoch experi-
ments, training was conducted in Kaggle’s GPU
environment using nn.DataParallel for multi-
GPU processing. Note that nn.DataParallel op-
erates in a single-node, single-process configu-
ration and may incur CPU-to-GPU scatter over-
head. When scaling to multiple GPUs, it is ad-
visable to proportionally increase the batch size
and save both the optimizer state and the current
epoch to allow resuming interrupted training.
The effect of applying early-stopping and model
checkpointing during 14-epoch runs is to ensure
the robustness of the model, and whenever the
validate does not improve, save the model and
select the best model at the best epoch in Fig-
ure 6.

5 Results and Discussion

The results are summarized in Table 2. The
RGB-based R3D-18 achieved an accuracy
of 84.09%, while the keypoint-based model
reached 92.05%. The keypoint model also
demonstrated higher precision and F1-score, in-
dicating stronger consistency between classes.
To further enhance performance, early stop-
ping and model checkpointing were applied dur-



Table 2. Performance Comparison Between RGB and MediaPipe Models

Architecture Precision Recall F1-Score Accuracy
R3D-18 (RGB) 88.35% 84.09% 83.72% 84.09%
R3D-18 (Keypoint) 95.21% 92.05% 92.56 % 92.05%

Table 3. Sample of Most Confused Class Pairs

True Label Predicted Label Count

Ruler Eraser 2

Director Female Director 2
Loss Curve Accuracy Curve

3.0 1 —e— Train Loss 100 1 —e— Train Acc
Val Loss Val Acc

25 801

2.0
60

Loss
Accuracy (%)

15

404

20

/

10 15 2.0 25 3.0 35 4.0 45 5.0 10 15 20 25 3.0 35 4.0 4.5 5.0
Epoch Epoch

(a) (b)

Figure 4. Training and validation curves for the Keypoint-based model. (a) Loss Curve: Consistent,
steep reduction in both Training and Validation Loss, confirming successful convergence. (b) Accuracy
Curve: Substantial increase in both Training and Validation Accuracy, demonstrating significant predic-
tive improvement.

Table 4. Early-Stopping and Model Checkpointing Performance - 14 Epoch

Architecture Precision Recall F1-Score Accuracy
R3D-18 (Keypoint) 95.43% 94.32% 94.28 % 94.32%
ing a 14-epoch training process. This ap- tween semantically and visually similar classes
proach helped prevent overfitting and automat- (Table 3). For example, “Director” and “Female
ically saved the best-performing model based Director” have nearly identical initial move-
on validation loss. As shown in Table 4, the ments but differ subtly near the end of the ges-
keypoint-based model improved to 94.32% ac- ture, making it difficult for the model to distin-
curacy, with 95.43% precision and 94.28% F1- guish between them. Figure 9 provides a quali-
score. The training curves in Figure 6 also tative comparison showing similar hand trajecto-
demonstrate smoother convergence and stable ries that caused this confusion.

validation trends, confirming that early stopping
effectively reduced unnecessary epochs while
preserving generalization.

These findings confirm that, while RGB pro-
vides richer appearance information, it also in-
troduces noise that hinders small-data learn-
Some confusion remained, particularly be- ing. Keypoint-based features emphasize essen-
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Figure 5. Training and validation curves for the RGB-based model. (a) Loss Curve: Consistent, strong
reduction in both Training and Validation Loss. (b) Accuracy Curve: Rapid, continuous increase in both

Training and Validation Accuracy.

Training and Validation Loss Over Epochs

Training and Validation Accuracy Over Epochs
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Figure 6. Applied early stopping for the Keypoint-based model. (a) Loss Curve: Optimal checkpoint
selected at Epoch 14 (Best Val Loss: 0.6611). (b) Accuracy Curve: Peak generalization reached at

Epoch 14 (Best Val Acc: 79.55%).

tial motion cues and yield higher accuracy and
generalization for Khmer Sign Language recog-
nition.

6 Conclusion

To conclude, a baseline deep learning frame-
work for Khmer Sign Language recognition
was developed using a small annotated dataset.
Two variants of the R3D-18 model were evalu-
ated: RGB and MediaPipe keypoint-based. The
keypoint model outperformed the RGB model,
achieving an accuracy of 92.05%, as shown in
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Figures (4-7), while the RGB model reached an
accuracy of 84.09% in Figures (5-8). This per-
formance gap can be explained by the fact that
the RGB model is more sensitive to lighting,
background variations, and visual noise, whereas
the keypoint model focuses on skeletal land-
marks, capturing motion and structure more ef-
fectively under limited data conditions.

This study is limited by the small size dataset
and the signer-dependent setup.

These results demonstrate that landmark-
based representations enhance robustness and
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generalization for small datasets. Future work
will add labels for all 100 classes, test the model
with different signers, and use techniques like
early stopping and saving model checkpoints
with extensive testing to ensure robustness. We
will also explore Transformer-based architec-
tures and attention mechanisms over time to fur-
ther improve accuracy. This research establishes
a foundation for the recognition of Khmer Sign
Language and contributes to the development of
inclusive technologies that support communica-
tion, education, and accessibility for the Deaf
community in Cambodia.
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Abstract

Coastal erosion is a global challenge that
requires accurate and reliable monitoring of
sediment dynamics. This study presents an
effective approach for estimating sand volume
changes and analyzing coastal dynamics using
time-series airborne LiDAR data. Digital
Elevation Models (DEMs) derived from LiDAR
surveys were used to quantify elevation changes,
and an offset compensation method was applied
to reduce systematic measurement errors. Cali-
bration using known reference box volumes con-
firmed that the offset-corrected results closely
matched ground-truth measurements, improving
volumetric accuracy. Seasonal analysis revealed
distinct patterns of sediment transport along
the coastline. From October 2024 to April
2025, all sections experienced notable sediment
deposition, indicating beach accretion during
the dry season. Conversely, from April to
August 2025, significant erosion occurred likely
due to intensified wave energy and monsoonal
influences during the rainy season. The results
demonstrate the reliability of airborne LiDAR,
when combined with error correction and DEM
differencing, as a powerful tool for high-
resolution coastal monitoring and for supporting
evidence-based shoreline management.

Keywords: Coastal monitoring, Sand volume
change, Airborne LiDAR, Coastal erosion,
Nearshore analysis

1 Introduction

Coastal erosion is a global challenge that
threatens ecosystems, infrastructure, and human
settlements in near-shore environments [1].
Effective coastal monitoring and management
are therefore essential to understand the dy-
namics of the shoreline and mitigate associated
risks [2], [3]. A critical component of such
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monitoring is the accurate estimation of the
change in sand volume, since fluctuations in
sediment distribution directly influence erosion
and deposition processes [4]. Airborne light
detection and ranging (LiDAR) has emerged as a
powerful tool for topographic mapping in coastal
regions for its ability to provide high resolution
three-dimensional representations of the terrain
[51, [6], [7].

LiDAR surveys provide valuable data for
quantifying coastal morphological changes over
time. Studies have shown that beach erosion
and deposition patterns are spatially variable,
with changes often concentrated at specific
locations rather than uniformly distributed [8],
[9]. For example, analysis of a 63 km stretch
of Assateague Island revealed that the island
ends experienced the most significant erosion
and deposition [9]. LiDAR data can be used
to calculate various coastal metrics, including
shoreline change, volume change, and subaerial
volume change [10]. These metrics allow for
comprehensive monitoring of dune systems, as
demonstrated in a study of Formby coast, which
found significant sand erosion on the beach and
frontal dunes, while inner dunes gained sand
over a 21-year period [11]. The high-density
data provided by LiDAR enables accurate
assessment of shore changes at both small and
large scales [8]. Adam P. Young et al. [12] uses
airborne LiDAR to quantify volumetric change
from seacliff and gully erosion in the Oceanside
Littoral Cell, California. The results suggest that
sea cliffs are the dominant source of beach-sand-
sized sediment compared to gullies and rivers
during this relatively dry 6-year period. Faik
Ahmet Sesli et al. [13] conducted a study to
determine coastline change as a basic element of
Integrated Coastal Zone Management, reporting
a significant coastal retreat in the study area over
a two-year period. Recent work by Glenn M.
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Suir et al. [14] focuses on combining LiDAR-
derived elevation model(DEM) with vegetation
metrics to assess hurricane-induced spatial and
temporal changes in both terrain elevation and
the coastal dune vegetation that stabilizes it.
Recent regional studies have applied LiDAR
and remote sensing for coastal monitoring in
Southeast Asia. Phua et al. [15] used airborne
LiDAR and UAV data in Malaysia to assess
coastal topography and vegetation dynamics,
while Latif and Yong [16] analyzed shoreline
changes in Brunei Darussalam using spatial and
geomorphological methods. However, while
these studies successfully quantified shoreline
change, they did not incorporate volumetric
validation using known-reference structures.

Even though considerable research has been
conducted on coastal change detection using Li-
DAR data, there remains a lack of methods that
validate estimated volumetric changes against
known-volume reference structures. In this
work, we propose an approach to estimate sand
volume change and analyze coastal dynamics
over time using airborne LiDAR time-series
data. A compensation method is introduced
by using known box volumes as ground-truth
references. This approach enhances confidence
in the derived volume change results and
supports more reliable coastal monitoring and
management applications.

This study is part of ASEAN IVO frame-
work that aims to generate scientific insights
to support policy development and decision-
making that aimed to mitigate the issue of coastal
erosion.

2 Study area and Data acquisition

2.1 Study Area

The data was gathered along a 3.5-kilometer
section of coastline in Chanthaburi province,
Thailand. This area features bamboo fences
installed to combat coastal erosion. The goal
of these fences are to reduce wave energy
and to trap sediment on the muddy beach,
which receives sediment from both land and sea
to create enough stable ground for mangrove
forestation, a natural defense against further
erosion.

This particular site was selected for its dy-
namic coastal characteristics and environmental
significance. This region experiences continuous
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shoreline changes influenced by wave action,
tidal processes, and sediment transport, making
it suitable for analyzing coastal dynamics.
This coastline represents a typical estuarine
environment along the eastern Gulf of Thailand,
where issues of erosion and sedimentation
are evident.  The area’s manageable size,
and accessibility also facilitate accurate data
collection and analysis. Furthermore, the area’s
ecological and socioeconomic importance, par-
ticularly its aquaculture activities and mangrove
ecosystems, highlights the need for a deeper
understanding of coastal processes to support
sustainable management and the mitigation of
erosion impacts.

Figure 1.  Study area located in Khlung,
Chanthaburi Province, Thailand, showing the
four divided coastal sections.

The study area is divided into four sections
based on geomorphological characteristic and
presence of bamboo fences. Section 1 represents
the northernmost part of the coast, characterized
by a gently sloping beach with dense mangrove
vegetation and relatively stable shoreline condi-
tions. Section 2 includes a moderately eroded
area adjacent to small coastal developments,
where partial bamboo fencing structures are
present to reduce wave energy. Section 3 is
located near a more exposed shoreline with
less vegetation coverage and exhibits more



noticeable sediment redistribution, indicating
active erosion and deposition processes. Section
4 lies at the southern end of the study site,
where the beach is protected by continuous bam-
boo fences and experiences dynamic sediment
accumulation near the structures, suggesting
their influence on local sediment trapping and
shoreline stabilization.

2.2 Data Acquisition

The data in this study were collected using UAV
LiDAR, a laser-based remote sensing technique
that is widely used as one of the most advanced
technologies currently available. Conceptually,
LiDAR operates in a way similar to RADAR or
SONAR, but instead of radio or sound waves, it
relies on laser light. The system transmits rapid
pulses of laser beams toward the Earth’s surface,
where they are refracted back to the sensor.
With ground sample distance about 2 cm and
high point density, the survey provided a highly
detailed representation of the terrain. Positioning
was supported by a GNSS base station and
corrected using the National CORS Data Center,
while an inertial measurement unit (IMU) helped
determine sensor orientation [17]. The dataset is
stored as a 3D point cloud as shown in Figure 2.
However, as with most LiDAR systems, water
surfaces remain a challenge due to their low
reflectivity, which reduces the number of points
recorded [18].

Figure 2. Full scan survey of the study area.
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3 Methodology
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Figure 3. Coastal change analysis framework.
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Figure 4. Field setup: (a) boxes placement in the
study area and (b) verification of the box’s height
using tape measure.

This study employed two airborne LiDAR
surveys conducted over the study site within
a monthly interval. The primary survey was
collected in April 2025, while the secondary
surveys were obtained between October 2024
and September 2025. The surveys covered
areas in both square and rectangular shapes.
All raw point cloud data were preprocessed
and segmented into four areas of interest
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Figure 5. (a) Creation of a Digital Elevation

Model (DEM) and (b) box area subsection
between April-May, 2025.

using a custom-built point cloud cutting tool,
designed to account for the geomorphological
characteristics of the beach.

Following preprocessing, the regions of
interest were further divided into box areas
and sand areas using CloudCompare [19]. To
ensure accuracy in volumetric estimation, non-
relevant features such as trees and vegetation
were removed manually using segmentation tool
in CloudCompare, leaving only the sand-covered
surfaces for analysis.

The analysis workflow is illustrated in Figure
3. Next, the point cloud data were converted into
Digital Elevation Models (DEMs) by dividing
the area into a series of grids with a selected
grid size d. The elevation value (z-value) of
each grid cell was calculated by averaging the
z-value of all 3D points contained within it.
These processes were implemented using Python
scripts. To capture temporal changes in coastal
morphology, DEM differencing was applied,
whereby the secondary DEM was subtracted
from the primary DEM. This produced elevation
change surfaces as shown in Figure 5(b), which
served as the basis for subsequent volumetric
calculations. Let p is a point in 3D space with
(x,y,z) as a coordinate system. z is latitude,
y is longitude and z is the elevation. The point
cloud is divided into grid with size d, as shown
in Figure 5(a). Let (Zz',j) is the average elevation
of points within the grid (i, 7). Then,

_ 7l 72
AZ@’J - szj - Zi?j’

ey

where
Zi{ ; 1s from primary DEM,

Zi% ; 1s from secondary DEM,
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i denotes the i™ row,
j denotes the 7 row.
Therefore, the volume change is

M N
V=>"> Az;-d

i=1 j=1

)

where
V' is the total volume,
dl%j is an area of the grid cell (i, j), and

M and N are the number of rows and columns
in the grid.

Equations (1) and (2) are the simple idea
of volume estimation; however, the problem is
that we cannot know the ground truth of how
much the actual volume change is. In addition,
the accuracy of the estimation is sensitive to
the parameter d or grid resolution and the
point cloud density (points/m?). Therefore, we
propose to use a known-volume object placed
on an area that we can control and use the
estimated volume change as a reference. In
this paper we propose to use a square boxes
structures with a total known volume of 2.79
m3 and height of 0.78 centimeters as shown in
Figure 4. Cropped subsections AZ containing
these boxes as illustrated in Figure 5(b), were
analyzed to compare the estimated volumes
derived from DEM differencing with the actual
physical volumes. We sampled points in the area
on the top of the box and calculated the height
average. The similar approach was applied to
an area on the road surface around the boxes.
We use histogram plots to check the elevation
distribution of the road surface and surface on
the top of the box. We take the advantage of
using the square boxes with sharp edges. That
indicates a distinct elevation difference between
the road surface and the top of the boxes. The
histogram is expected to exhibit two primary
peaks, corresponding respectively to the road
surface and the upper surface of the boxes, as
shown in Figure 6. The left peak represents the
ground surface, which is centered around zero,
consistent with the assumption that no elevation
change occurs on the road. Based on the fact
that there should be no change on the road area.
Therefore, we move all the pillars to the left



with some value, which we call an offset value.
The offset value as corresponds to the difference
between average height (Z) and actual height
of the box(red) area, as in (3). This correction
factor was then applied across the sand area
grids, as in (4) to improve the reliability of
the sand volume estimations. When applying
the offset value to the sand area with different
grid size, we use the concept of Constant of
proportionality [20] to calculate corresponding
offset value.

offset = actual height — average height, (3)

7"V — 7°9 4 offset 4)

Finally, volumetric change analysis was
performed to quantify erosion and deposition
processes across the selected area and time
frame. In addition, spatial analyses were
conducted using DEM differencing plots to
visually interpret and validate the distribution of
erosion and deposition within the sand area.

4 Results and Discussion

4.1 Offset value and compensation

In this section, box volume estimation method
was conducted compare with the ground-truth.
All experiments were carried out with the same
grid size of 0.07 meters to generate the DEMs
for volume calculation. Table 1 presents a
comparison between the actual box volume, the
initial estimation without correction, the refined
estimation with the offset adjustment, and the
results obtained using CloudCompare software.
The initial estimation produced a volume of 3.61
m3, which considerably overestimated the true
volume of 2.79 m3. After applying the offset
correction, the estimated volume is 2.91 m3,
close to the ground-truth value. In contrast,
the CloudCompare estimation yielded 3.60 m?3,
which remained significantly higher than the
actual volume.

To quantitatively assess the effectiveness of
the offset compensation, the absolute error
between the estimated and actual box volumes
was calculated before and after applying the
correction. The initial estimation showed an
absolute error of 0.82 m3, indicating a notable
overestimation of the true volume.  After
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Figure 6. Histograms of delta altitude () values
in the box area: (a) before offset correction and
(b) after offset correction.

applying the offset adjustment, the error was
significantly reduced to 0.12 m3, representing
an improvement of approximately 85% in
estimation accuracy. This substantial reduction
demonstrates that the offset compensation
method effectively minimized systematic bias
and enhanced the reliability of volumetric
calculations.

To further evaluate the offset compensation
approach, elevation histograms of the box
area were examined before and after applying
the correction. As shown in Figure 6, the
distribution of delta altitude (Z) values shifted
slightly to the left after offset adjustment. The
highest frequency bin remained centered around
zero, corresponding to the ground surface, which
confirms the stability of the reference level.
More importantly, the secondary peak on the
right side of the histogram, representing the
top surface of the boxes, was observed at
approximately 0.78 m after offset correction.



Table 1. Volumetric change estimation comparison.

Actual Initial Estimation Estimation by
(m3)  Estimation (m?) w/t offset (m®) CloudCompare (m?3)
2.79 3.61 291 3.6

This value is consistent with the known physical
height of the boxes, indicating that the applied
offset improved the alignment between the
estimated and actual height.  Overall, the
results demonstrate that the offset compensation
successfully reduced systematic errors and
improved the reliability of volume calculations
derived from DEM differencing.

4.2 Volumetric Analysis

As observed from Table 2, the volumetric change
from October 2024 to August 2025 reveals
distinct patterns of sand deposition and erosion
across the four study sections. During the first
observation period (October 2024-April 2025),
a substantial net deposition of +93,725 m? was
observed. This pronounced accretion suggests
that the calmer sea conditions and lower wave
energy typical of the dry season favor sediment
accumulation along the coast. Among the four
sections, Section 2 recorded the highest net
increase (+35,395 m?3), indicating that this area
may act as a natural sediment sink during periods
of low hydrodynamic activity.

In contrast, the second observation period
(April-August 2025) exhibited a notable de-
crease in net deposition, with an overall gain of
only +22,325 m3 and significantly higher erosion
volumes (-6,452 m3). This seasonal shift can
be attributed to intensified wave action, stronger
longshore currents, and increased rainfall runoff
during the monsoon season, which promote
sediment transport and coastal erosion. Section
2 again showed a marked response, recording the
highest erosion (-4,326 m3), suggesting that this
area is particularly sensitive to hydrodynamic
changes.

Overall, the seasonal analysis underscores
the dynamic nature of sediment distribution
along the coastline, where the balance between
deposition and erosion is strongly governed by
climatic patterns. These findings highlight the
importance of continuous monitoring to better
understand seasonal shoreline evolution and to
support effective coastal management strategies.
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4.3 Deposition and Erosion Analysis

During the first period (October-April), a
noticeable net deposition was observed across
all four sections.  Section 2 exhibited the
highest deposition followed by Section 4.The
spatial plots in Figure 7 support this observation,
showing broad yellow-to-green zones represent-
ing positive elevation changes, especially in
Sections 2 and 4, indicating large-scale sand
deposition.Whereas, in the second period (April-
August), noticeable erosion occurred in several
sections, particularly Section 1 and Section
2, likely due to increased wave energy and
coastal run-off associated with the monsoon-
driven currents. The maps in Figure 8 visually
confirm this trend, with increased dark purple
regions indicating erosion zones, particularly
along the upper parts of Sections 1 and 2.

5 Conclusion

This study demonstrated an effective approach
for estimating sand volume change and ana-
lyzing nearshore dynamics using a time series
of airborne LiDAR data. By employing
Digital Elevation Model (DEM) differencing
and an offset compensation technique, the
proposed method effectively reduced systematic
LiDAR errors and improved the accuracy
of volumetric estimations. Validation using
known box volumes confirmed that the offset-
corrected results closely matched ground-truth
measurements, reinforcing the reliability of the
proposed approach.

The volumetric and seasonal analyses re-
vealed distinct patterns of deposition and erosion
influenced by monsoonal conditions. From
October to April, the site exhibited substantial
net deposition, whereas from April to August,
increased erosion and sediment redistribution
were observed. These findings provide valuable
insights into the temporal and spatial variability
of coastal sediment dynamics and emphasize the
role of seasonal processes in shaping shoreline
change.  Overall, the results highlight the
potential of airborne LiDAR as a reliable tool for



Table 2. Summary of seasonal volumetric change from October, 2024 to August, 2025.

Period Sections  Net-Change (m®) Deposition (m®) Erosion (m?)

October, 2024 - April, 2025 Section 1 +19704 +19704 -0
Section 2 +35395 +35522 -127
Section 3 +10382 +10646 -264
Section 4 +28244 +28276 -32
Total +93725 +94148 -423

April, 2024 - August, 2025  Section 1 +1074 +2541 -1467
Section 2 +2186 +6513 -4326
Section 3 +3503 +4131 -627
Section 4 +15561 +15593 -32
Total +22325 +28777 -6452
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Figure 7. Deposition and erosion pattern of the beach from October, 2024 to April, 2025.
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Figure 8. Deposition and erosion pattern of the beach from April, 2025 to August, 2025.

quantitative coastal monitoring and long-term
management, particularly when integrated with
appropriate error correction and spatial analysis
techniques.
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Abstract

Khmer scene text recognition presents signif-
icant challenges due to the complex structure
of Khmer’s script, which includes stack con-
sonants, special diacritics, and a lack of con-
sistent word spacing. In this work, we pro-
pose a two-stage approach to detect and recog-
nize Khmer scene text. We first utilize Faster
R-CNN, a deep learning-based object detection
model, to identify text region coordinates in var-
ious images. Subsequently, the detected re-
gioned are processed by TrOCR, a Transformer-
based model, for character recognition. Our
model is trained and evaluated on a combina-
tion of real-world and synthetic data, including
the KhmerST dataset, the 62k Khmer Printed
Dataset, and the Khmer Annotation dataset. Our
approach achieves strong detection performance,
with a high recall rate of 91.4% and a precision
of 70.1%, indicating robust text localization. The
recognition stage yields a Character Error Rate
(CER) of 18.3%. On a manually curated real-
world test set, the detection model achieves a
precision of 62.2%, recall of 55.5%, demon-
strating reasonable generalization. Our analysis
shows that while the detector effectively localize
the text, recognition errors are primarily linked
to the script’s inherent complexity and inconsis-
tencies in text-line segmentation.

Keywords: Khmer text recognition; scene text
detection; OCR; Faster R-CNN; TrOCR; deep
learning; computer vision

1 Introduction

Text detection from natural images is not an easy
task, particularly for complex scripts such as
Khmer. Text may appear in different forms, in-
cluding printed text, handwritten text, and scene
text. Printed text is easier to detect because it
is often shown in clear space and font size. On
the other hand, handwritten style is more diffi-
cult due to the styles, sizes, and alignment of
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Figure 1. Printed text display in clean back-
ground with consistent space and font use.

the word. Regarding the text of the scene, it
may appear in various sizes, fonts, orientations,
and backgrounds in real-world scenarios, as il-
lustrated in Figure 1-3. Furthermore, the char-
acteristics of the Khmer language, stacked con-
sonants, diacritical marks, and the absence of
obvious word spaces make it even more diffi-
cult to detect [1] . Therefore, Khmer scripts
present unique challenges that make scene text
recognition far more difficult than widely stud-
ied languages like English or Chinese [2]. More-
over, unlike Latin scripts, Khmer is not space-
separated between words consistently, which
complicates segmentation. Such language fea-
tures combined with real-world issues such as
low-quality images, non-uniform lighting, noisy
environments, and inconsistent fonts pose very
challenging tasks to effective text detection and
recognition [1, 3].
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Figure 2. Handwritten shows in different writing
styles, sizes, spacing, and stroke.

Early OCR engines, like Tesseract [4], have
not been very successful when applied to Khmer,
while the TRBA model [2], in which ResNet [5]
is combined for feature extraction, BILSTM [6]
for sequence modeling, and Transformer-based
attention [7], achieves significantly better perfor-
mance [2]. Most of the existing work has been
done on printed text or synthetic data, whereas



a. lighting variation b. shadow and reflection  c. complex background

Figure 3. Scene text affect by lighting variation,
shadows, reflections, and complex background.

natural scene images include variations such as
lighting, blur, and background noise, in which
can significantly impact the OCR performance.

To tackle these difficulties, our project comes
up with a two-stage approach. In the first stage,
the model learns intermediate concepts, which
then serve as the feature space for the sec-
ond stage [8]. Specifically, we first employ an
object detection method named Faster R-CNN
(Region-based Convolutional Neural Network)
[9] for detecting and localizing text areas in real
images, in which make use of FPN (Feature
Pyramid Network) [10]. In the second stage,
we utilize TrOCR, a Transformer-based OCR
model, to detect and convert recognized text ar-
eas into readable digital text that can be pro-
cessed by computers.

2 Related Work

2.1 Seq2Seq with Attention on Khmer OCR

Khmer Optical Character Recognition (OCR)
conducted by [11] introduced one of the pioneer-
ing end-to-end sequence-to-sequence (Seq2Seq)
frameworks employing attention mechanisms
for recognizing printed text. The encoder
architecture comprised convolutional residual
blocks in conjunction with Gated Recurrent
Units (GRUs) [12], whereas the decoder utilized
an attentive GRU to produce character sequences
directly from complete text-line images, elim-
inating the need for segmentation or manually
engineered feature extraction. In order to train
the model, the researchers created approximately
92,000 synthetic images sourced from the Asian
Language Treebank (ALT) [13] by employing
seven widely used Khmer fonts, alongside fur-
ther augmentations including noise, dilation, and
rotation. Evaluation on test dataset with 3000
images shows the model achieved a Character
Error Rate (CER) of only 1% and a Word Er-
ror Rate (WER) of 9%, in which surpassed the
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Tesseract OCR that’s reported to achieved a CER
of 3% and a WER of 26% [11].

Building on this foundation, Buoy et al. [14]
further improved this by increased the dataset
to over three million synthetic text-line images
in various Khmer fonts. Unlike the earlier re-
search, this study applied with augmentation by
adding noise, blur, and complex background dur-
ing training in order to make the model more
generalized in real life situations. The result with
the dataset of 6400 augmentation validation im-
ages achieved a CER of 0.7% while Tesseract
only achieved with CER of 35.9%. Even with
de-augmented data, the new model still have bet-
ter accuracy with 0.24% vs 1.6% for Tesseract.
The main difference between these two studies
is in scale and robustness; with the 2021 study
showing that Seq2Seq with attention could work
for Khmer OCR, while the 2022 study improved
it by enlarging the dataset, using more complex
augmentation, and achieving top performance in
noisy and font-variable conditions [14].

2.2 Khmer STDR

Previous studies on Khmer Optical Character
Recognition (OCR) mostly focused on printed
text with sequence-to-sequence (Seq2Seq) mod-
els with attention. However, these systems only
worked well for printed text in most situations.
They did not address recognizing scene text,
which is when text is found in natural settings
with distortions, blur, and background noise.
Nom et al. [1] introduced KhmerST, the first
dataset for Khmer scene text. This dataset con-
tained 1,544 images that the researchers have
annotated; 997 indoors and 547 outdoors. Un-
like fake printed datasets, KhmerST shows real-
world differences, including raised or flat text,
poor lighting, far or partly hidden signs, and
complex backgrounds. Each image is anno-
tated with polygonal bounding boxes at text-
line level, producing 3,463 cropped regions for
recognition tasks. The authors also did exper-
iment on both detection and recognition task
with the YOLO family and the Transformer
model. Several YOLO architectures were fine-
tuned; among them, YOLOVS achieved the best
result for the text detection task, with a recall of
0.832 and mAP50 of 0.899. For text recognition,
the researchers investigated the performance of
two transformer models; TrOCR and Tesseract.
TrOCR achieved a Character Error Rate (CER)



of 1.01% and Word Error Rate (WER) of 2.24%,
while Tesseract fall behind with 1.30% CER and
4.75% WER.

2.3 Cross-Lingual Learning for Khmer
STDR

In high-resource languages like English and Chi-
nese, have shown great performance in both
text detection and text recognition, however low-
resource language like Khmer remain a problem
in the field. To overcome these limitations, Nom
et al., [15] proposed CLL framework by using
high resource language fine-tune on Khmer lan-
guages . The authors uses YOLOvI11 [16] and
TrOCR on the WildKhmerST [17]for training
and KhmerST [1] for evaluation. In this study,
the authors compares both training from scratch
and fine-tuning models pretrained on high re-
sources language. For text detection, they used
YOLOvV11 and compared a model that built from
scratch to the improved one that using weights
pretrained on the COCO dataset [18]. The im-
proved YOLOvVI11 performed better (precision
0.840, recall 0.809, mAP50 = 0.889) and needed
much less computing power than the model
built from scratch (precision 0.807, recall 0.801,
mAP50 = 0.852). For recognition, they used
TrOCR and found that they could significantly
reduce the error rate if they upgraded the pre-
trained Latin script models with the Khmer data.
They achieved CER of 0.17-0.18 with WER
of 0.33-0.35 compare to the CER 0.40-0.44
and WER 0.55-0.59 if they were trained from
scratch [15].

3 Methodology

Scene text detection and recognition have been
widely studied, but Khmer presents unique chal-
lenges due to the complexity of its script [1]. To
obtain desirable outcomes, a two-stage approach
is preferred over end-to-end models, with Stage
1 focusing on precise text detection and Stage
2 on recognition. This separation enhances de-
tection accuracy in complex backgrounds and al-
lows independent optimization, making it better
suited for low-resource environments [19].
Among detection models, EAST [20] pro-
vides real-time performance through direct re-
gression of text boxes without complex post-
processing. However, its coarse outputs of-
ten miss fine details critical for Khmer script.
CRAFT [21] achieves high accuracy by pre-
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dicting pixel-level character regions and affinity
links, enabling detection of curved or irregular
text, but it requires character-level annotations,
which are scarce for Khmer datasets.

To address these challenges, Faster R-CNN,
proposed by [9], offers a robust two-stage detec-
tion framework. It first generates region propos-
als, followed by refined classification and bound-
ing box regression. When paired with a Feature
Pyramid Network (FPN) backbone [10], the de-
tector gains powerful multi-scale feature extrac-
tion capabilities. This is particularly advanta-
geous for detecting small and intricate elements,
such as Khmer diacritics.

The Faster R-CNN + FPN architecture strikes
an effective balance between accuracy and an-
notation simplicity. Unlike CRAFT, it only re-
quires word-level bounding boxes, reducing the
burden of intensive annotation. The FPN fur-
ther enhances detection of small glyphs across
multiple resolutions, making this combination
highly suitable for Khmer scene text detection.
When integrated with a strong recognition net-
work, this approach provides a practical and
scalable solution for Khmer scene text recogni-
tion in real-world settings.

After selecting a detector, the next step is to
choose a recognizer capable of accurately han-
dling the complexities of Khmer text. Tradi-
tional OCR engines like Tesseract rely on image
preprocessing and LSTM-based sequence mod-
eling [22], which work well for clean printed
text but struggle with noisy, irregular scene text.
Deep learning-based recognizers such as CRNN
[23], RARE [24], ASTER [25], and SAR [26]
have advanced this field by integrating CNNss, re-
current layers, spatial transformers, and attention
mechanisms. While these models achieve strong
performance on regular text, they face challenges
with highly complex scripts like Khmer, which
contain stacked glyphs and intricate diacritics.

The Transformer-based OCR model, TrOCR,
proposed by Li et al. [27], introduces a fully
transformer-based encoder-decoder architecture.
The encoder is a vision transformer (ViT) that
processes image patches, while the decoder is
a pre-trained language transformer similar to
RoBERTa. TrOCR leverages large-scale pre-
training on synthetic and real-world image-text
pairs, significantly improving performance after
fine-tuning on target datasets. According to the
KhmerST benchmark, TrOCR substantially out-



performs Tesseract for Khmer scene text recog-
nition [1]. This demonstrates the effectiveness of
modern transformer-based architectures for low-
resource languages such as Khmer.

By comparing all of these different models,
we find TrOCR to be the most suitable one
as its global self-attention makes it excellent
at modeling long-range dependencies between
base consonants and diacritics, which is crucial
for Khmer language.

3.1 Pipeline and Detailed Architecture

Given the previously mentioned challenges of
Khmer script recognition [1], we propose a two-
stage architecture that combines Faster R-CNN
with a Feature Pyramid Network (FPN) for text
detection and TrOCR (Transformer-based OCR)
for text recognition. This hybrid approach lever-
ages the strengths of advanced object detection
and sequence-to-sequence modeling, enabling
precise localization and robust recognition of
Khmer text in complex, real-world scenes. The
system operates as a two-step pipeline (1) Text
Detection: Faster R-CNN with FPN identifies
and localizes text regions within the input im-
age, producing bounding boxes that tightly en-
close words or lines of text. (2) Text Recogni-
tion: Each detected region is cropped and passed
to the TrOCR model, which encodes the visual
features and decodes them into a sequence of
Khmer characters as can be observed from Fig-
ure 4.

3.1.1 Text Detection with Faster R-CNN
and FPN

Standard Faster R-CNN can struggle with
small-scale features, such as the fine details and
diacritical marks that are common in Khmer
text, often resulting in incomplete detection.
To address this limitation, we integrate a Fea-
ture Pyramid Network (FPN) into the Faster R-
CNN framework. The FPN enhances multi-
scale feature representation by combining high-
resolution, low-level features with high-level
semantic features. This design improves the
model’s ability to detect both large and small text
instances in diverse scene settings. The detec-
tor outputs a set of bounding boxes, each repre-
senting a localized text region. These bounding
boxes are then cropped and resized to a consis-
tent size before being forwarded to the recogni-
tion stage.
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3.1.2 Text Recognition with TrOCR

For the recognition step, we employ TrOCR, a
Transformer-based, sequence-to-sequence OCR
model. TrOCR reframes text recognition as a
translation task, mapping visual features from
cropped text regions directly to a sequence of
text tokens. This eliminates the need for explicit
character segmentation, which is particularly
difficult for Khmer due to its connected charac-
ters and complex positional rules.

TrOCR is composed of two main components:
(1) A Vision Transformer (ViT)-based encoder
for visual feature extraction. (2) A Transformer-
based decoder for autoregressive text generation.

For Vision Transformer (ViT) Encoder, The
cropped text region is first divided into non-
overlapping patches of size 16x16 pixels. Each
patch is linearly embedded into a vector of di-
mension 768 (hidden_size). Positional embed-
dings are added to preserve the spatial relation-
ships among patches. The resulting sequence
of patch embeddings is processed through 12
Transformer layers, each equipped with 12 self-
attention heads, to generate a rich representation
of the visual input.

For the Transformer Decoder, the decoder op-
erates autoregressively, generating one Khmer
token at a time. At each step, it leverages cross-
attention mechanisms to align the encoded visual
features from the ViT encoder with the partially
generated output sequence. The decoder also
consists of 12 layers but uses 16 attention heads
and a hidden dimensionality of 1024 (d_model),
providing greater capacity for handling complex
text sequences.

To effectively recognize Khmer text, TrOCR
is configured with several important adjust-
ments: Vocabulary Size: A tokenizer is designed
with a vocabulary of 50,265 tokens, covering
all Khmer characters, numbers, and punctuation
marks. Input Size: Cropped text regions are re-
sized to 384 x 384 pixels before being processed
by the encoder, ensuring consistent input dimen-
sions. Output Generation: The decoder contin-
ues generating tokens until it outputs an end-of-
sequence (<EOS>) token, which signifies com-
pletion of the transcription. A Two-Stage Ap-
proach workflow process proceeds as follows:
(1) Input Scene Image: A full-scene image con-
taining Khmer text is provided to the system. (2)
Text Detection: Faster R-CNN with FPN gener-
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Figure 4. Two-Stage Approach OCR pipeline integrating detection and recognition

ates bounding boxes for text regions at multiple
scales. (3) Cropping: Each bounding box is used
to extract and normalize individual text regions.
(4) Recognition: TrOCR converts each cropped
region into a sequence of Khmer characters.

3.2 Dataset

3.2.1 Training and Validation Datasets

To test and train our Khmer scene text recog-
nition system, we gathered and combined data
from three public sources: KhmerST [1], the
62k Khmer Printed Dataset [28] (synthetic im-
ages), and the Khmer Annotation Dataset [29].
The datasets provide a good balance of Khmer
text samples — ranging from clean synthetic
text lines to actual scene text in natural scenes.
By combining these datasets, we could train our
model to recognize both the visual pattern of
Khmer script and learn to deal with the issues
of scene variability, font differences, and image
noise.

e KhmerST Dataset (GitLab) [1]: This dataset
contains 1,544 real-world Khmer text images
from diverse settings, including signs, banners,
and advertisements. It provides line-level poly-
gon annotations converted to bounding boxes for
detection and cropped regions for OCR train-
ing, featuring varied lighting, angles, and back-
grounds to simulate real-world scenarios.

* 62K Khmer Printed Dataset (Hugging Face)
[28]: This dataset consists of 62,300 syntheti-
cally generated images of printed Khmer text.
The images were generated with different font
sizes and color variations.

e Khmer Annotation Dataset (Kaggle) [29]:
This Khmer Annotation data is a collection of
images of Khmer text with XML-style annota-
tions consisting of 3,376 image of printed Khmer
text. It is a record with an image file and rel-
evant width and height, word-level annotations
with both textual content written in Khmer script
and coordinates (x1, x2, y1, y2) of a bounding
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box localizing each word in the image.

3.2.2 The KST-Wild Test Set

Figure 5. Sample images from our KST-Wild
test set. The images showcase the diversity
of challenges, including varied fonts, complex
backgrounds, reflections, and non-horizontal
text orientations.

For the final, rigorous evaluation of our
model’s performance, we prepared a separate
test set, which we refer to as the Khmer Scene
Text In-the-Wild (KST-Wild) set. This dataset
comprises of 310 real-scene images collected
specifically to simulate challenging, real-world
use cases and was not used during training or
validation. The collection process was to in-
clude the following: (1) Real-world text from
street signs, billboards, shops, posters, vehicles,
and labels. (2) A wide range of font styles,
background textures, and image conditions (e.g.,
tilted text, low lighting, occlusion). (3) Only
real-scene images (no synthetic text).

To standardize training data, we normalized
text areas and manually annotated images using
the VGG Image Annotator (VIA), a lightweight
web-based tool for creating boxes and bounding
shapes [30]. This dataset serves as the bench-
mark for our final reported metrics.



Table 1. Summary of Datasets Used

Source Images Type Use
Merged for Training/Validation Pool

KhmerST [1] 1,544 Scene Train/Val
62K Printed [28] 62,300 Synthetic  Train/Val
Khmer Annot. [29] 3,376 Printed Train/Val
Total for Split 67,220 Mixed 80/10/10
Held-out Final Test Set

KST-Wild (Ours) 310 Wild Final Eval.

4 Experiments and Results

4.1 Experimental Setup

TrOCR Training: We utilized Amazon Sage-
Maker Studio on Amazon Web Services (AWS)
to train the TrOCR model on two datasets: a
62K-sample Khmer Printed Text dataset and the
Khmer Scene Text (KhmerST) dataset. Train-
ing was conducted on anml.g5.4xlarge in-
stance, equipped with one NVIDIA A100 Ten-
sor Core GPU, 64 vCPUs, and 256 GB of RAM.
The process required approximately 8.3 hours to
complete.

Object Detection Training: For the text
detection component, we trained a Faster R-
CNN model on the KhmerST dataset using an
ml.g4dn.8xlarge instance, which provides
one NVIDIA Tesla T4 GPU and 128 GB of
RAM. The training process completed in ap-
proximately 30 minutes.

Pipeline Integration: Since text detection
and recognition are distinct tasks, we integrated
both models into a unified pipeline for practical
use. The detection model first analyzes an input
image and outputs bounding box coordinates for
regions containing text. These coordinates are
then passed to the OCR model, which extracts
the text from each detected region. To enhance
usability and accessibility, we implemented a
simple graphical interface using Gradio, allow-
ing end-users to interact with the pipeline with-
out requiring technical expertise.

4.2 Evaluation Protocols

4.2.1 Object Detection

The object detection task is commonly eval-
vated using precision, recall, and FI1-Score.
Precision measures the proportion of correctly
predicted bounding boxes among all predicted
boxes, while recall measures the proportion of
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correctly detected objects among all ground-
truth objects. while F1-score gives us an average
balanced score between recall and precision. To-
gether, these metrics evaluate whether the model
is correctly identifying target objects and mini-
mizing missed detections.

Formally, they are defined as:

Precision — TP )
recision = o5 p
TP
= ———= 2
Reca TP+ FN 2)
F1 — score — 2 x (Precision x Recall) 3)

Precision + Recall

where TP is the number of true positives, FP
is the number of false positives, and FN is the
number of false negatives.

These evaluation metrics follow the standard
definition used in the PASCAL VOC Challenge
[31].

4.2.2 Optical Character Recognition

To evaluate the OCR task, we utilize several
complementary metrics.

Character Error Rate (CER) is computed
as the Levenshtein edit distance at the charac-
ter level divided by the total number of charac-
ters [32].

Word Error Rate (WER) extends this con-
cept to the word level, capturing insertions, dele-
tions, and substitutions at the word granularity
[33,34].

Together, these metrics provide a robust,
multi-level assessment of OCR performance.

4.3 Results and Discussion

4.3.1 Object Detection Result

From the table illustrated, Faster R-CNN have
shown impressive results achieving an impres-
sive score of 91.4% recall score indicating that



Table 2. Hyperparameter Settings for the Detection and Recognition Models

Parameter Faster R-CNN TrOCR

Model Base ResNet-50 w/ FPN  microsoft/trocr-base-handwritten
Optimizer SGD AdamW

Learning Rate 0.005 1x10°t02x107°
Batch Size 8 16

Epochs 10 5

Weight Decay 0.0005 0.01

Input Size Variable 384 x 384 px

IoU Threshold 0.5 -

Max Token Length - 128 char

Table 3. Performance Comparison of Object Detection and OCR Models

Task Metric Score
Precision  70.1%
Object Detection (Faster R-CNN) Recall 91.40%
Fl-score 79.40%
Precision 62.24%
Object Detection (Faster R-CNN), KST-Wild  Recall  55.51%
Fl-score 58.43%
. CER 18.27%
OCR (TrOCR), KST-Wild WER 54,439

GT: Green | Pred: Red

Figure 6. Sample results of output from Faster
R-CNN

the model is able to detect most of the actual rel-
evant objects in the scene text images. it has also
shown a relatively good score of 70.1% for the
precision score which indicates that the model’s
output are relatively correct but may output false
positive; this gives us a F1-Score of 79.40%.
However, on the manually collected dataset, the
model have achieved a slightly lower score of
F1-score at 58.43%. From these results, we can
infer that the model is capable of predicting and
outputting bounding box around text areas in
scene-text images; however, those bounding box
are not localizing the bounding box as accurately
as the ground truth in real world images. How-
ever, for the task of optical character recognition
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in scene-text scenarios, this result is acceptable
as the model have shown that that it is capable
of detecting all of the relevant text region area
in the image even if those box may not exactly
match the annotated bounding box which could
be drawn subjectively.

4.3.2 Optical Character Recognition Result

From Table 3, the KST-Wild dataset achieved
an accuracy of 18.27% in terms of CER and
54.43% in terms of WER. These metrics indi-
cate that, despite the model producing seemingly
reasonable predictions in certain cases, the over-
all transcription accuracy remains relatively low.
This discrepancy can be attributed to the behav-
ior of the object detection stage, which crops de-
tected text regions before passing them to the
recognition model. In several instances, ground
truth annotations contain multi-line text regions,
whereas the object detection model separates
these into multiple individual image segments.
When these segmented regions are processed in-
dependently by TrOCR, only partial text—often
corresponding to a single line—is recognized,
while the remaining lines are omitted. This mis-
match between annotation granularity and recog-



Table 4. Recognition Performance Compared with the KhmerST Baseline. Models Were Evaluated on

the KhmerST Dataset
Model / Pipeline CER (%) WER (%)
KhmerST Baseline (YOLOvS + TrOCR) [1] 1.01 2.24
Tesseract (as reported in [1]) 1.30 4.75
Our Model (Faster R-CNN + TrOCR) 5.12 12.11

nition output significantly increases both CER
and WER.

In addition, the relatively low performance
can be largely attributed to the unique struc-
tural characteristics of the Khmer script. Khmer
words are commonly formed by combining
a primary consonant with one or more sub-
consonants, resulting in complex compound
character structures. The recognition model fre-
quently struggles to correctly identify these com-
posite characters, leading to misrecognitions that
substantially degrade overall accuracy. These
findings underscore the inherent challenges of
OCR for complex scripts such as Khmer, par-
ticularly in handwritten or noisy real-world set-
tings.

5 Conclusion

This study presented a two-stage Khmer scene
text recognition pipeline that integrates Faster R-
CNN with Feature Pyramid Networks for text
detection and a Transformer-based OCR model
(TrOCR) for recognition. The proposed ap-
proach demonstrates that a detection-first ar-
chitecture is effective for localizing Khmer
text in complex real-world scenes, achieving
strong recall and robust generalization across
varied backgrounds and lighting conditions.
While recognition performance on the KST-
Wild dataset remains moderate due to chal-
lenges such as stacked consonants, inconsis-
tent spacing, and line-level segmentation mis-
matches, the results highlight the feasibility
of applying transformer-based OCR models to
low-resource, structurally complex scripts like
Khmer. The findings indicate that recogni-
tion accuracy is primarily constrained by limited
training data, short fine-tuning duration, and im-
perfect alignment between detection and recog-
nition granularity. Future work will focus on
improving text-line grouping strategies, expand-
ing real-world annotated datasets, incorporating
language-model-aware decoding, and extending
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training at scale to fully exploit the capabilities
of Transformer-based OCR for Khmer scene text
recognition.
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Abstract

Augmented reality (AR) lets people interact with
virtual objects in the real world using their smart-
phones. However, most AR systems need pow-
erful devices to run smoothly, which leaves out
many users who have older or low-end phones.
This research focuses on making marker-based
AR work well on these less powerful smart-
phones. By using simple and fast algorithms to
detect patterns and smart techniques to show 3D
models efficiently, the system can recognize im-
ages accurately and run smoothly even on bud-
get devices. Tests show that the system keeps
good performance and image recognition accu-
racy, proving that AR can be made more acces-
sible to a wider audience. This work aims to help
bring the benefits of AR to more people around
the world, regardless of the device they use.

Keywords: Marker-Based Augmented Real-
ity (AR), Features from Accelerated Segment
Test(FAST), Oriented FAST and Rotated BRIEF
(ORB)

1 Introduction

Augmented Reality (AR) is a technology that
overlays virtual objects onto the physical world
using digital devices such as smartphones or
tablets [1], [2]. This integration allows users
to interact with both digital and real-world el-
ements simultaneously, creating immersive ex-
periences. It is increasingly applied in various
fields such as education, entertainment, health-
care, and retail due to its ability to enhance vi-
sual and interactive content. AR systems gen-
erally work by capturing the real environment
through a camera, detecting visual markers or
features, understanding the spatial layout, and
rendering 3D content in real time. The ren-
dered virtual objects must align accurately with
the real-world environment to ensure a stable and
convincing experience. These processes require
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considerable computational resources, including
real-time image processing and graphics render-
ing, which can be challenging for low-end mo-
bile devices.

There are several types of AR, includ-
ing Marker-Based AR, Markerless AR (i.e.,
GPS/Sensor-Based AR), Simultaneous Local-
ization and Mapping (SLAM)-based AR, and
Projection-Based AR. Among them, Marker-
Based AR is the most lightweight and device-
friendly[1]. It uses printed patterns (called mark-
ers) to help the system identify specific locations
in the camera view, making it easier to place
and track virtual content. Marker-Based AR is
widely used in mobile applications, especially on
devices with limited hardware. However, run-
ning AR applications on low-end smartphones
remains difficult due to their limited CPU power,
smaller RAM, weaker GPUs, and lower-quality
cameras. These limitations often cause reduced
frame rates, slow marker detection, and unsta-
ble rendering [3]. As AR becomes more widely
adopted, it is important to develop lightweight
and optimized solutions to ensure acceptable
performance on these types of devices.

To address this issue, many researchers have
explored efficient computer vision algorithms
such as Features from Accelerated Segment Test
(FAST) and Oriented FAST and Rotated BRIEF
(ORB). FAST is a corner detection algorithm
that quickly identifies keypoints in an image
[4]. ORB builds on FAST by adding rotation-
invariant descriptors using BRIEF (Binary Ro-
bust Independent Elementary Features) for fea-
ture matching [5]. Together, these algorithms
provide a fast and effective method for real-time
tracking on low-end hardware, without sacrific-
ing too much accuracy. Several studies have
shown that combining FAST and ORB improves
AR performance. Rublee et al. introduced an
optimized Marker-Based AR method using ORB
and planar surface recognition [5]. It also used



OpenGL ES 2.0 with vertex rendering optimiza-
tions to improve 3D rendering performance. The
result showed up to 90% faster recognition and
stable frame rates of 16-24 FPS on low-end
smartphones [6], [8]. Another study compared
Marker-Based AR applications on different mo-
bile devices and found that image resolution and
processing speed were key factors affecting per-
formance. Lower resolutions helped improve
speed on older phones without significantly af-
fecting detection quality [7], [9].While these
studies have successfully improved AR perfor-
mance on smartphones, most of them focused
on mid- to high-end devices or did not evalu-
ate performance differences across hardware lev-
els. Additionally, they often optimized either the
feature detection or the rendering process indi-
vidually, rather than integrating both. As a re-
sult, their solutions may still struggle to deliver
smooth, real-time AR performance on low-end
smartphones with limited CPU and memory ca-
pacity.

To fill these gaps, this paper proposes an
optimized Marker-Based AR framework called
ModAR, which integrates lightweight computer
vision and rendering techniques tailored for low-
end smartphones. Specifically, the system com-
bines the FAST and ORB algorithms to en-
hance marker detection speed and stability while
minimizing computational load. The proposed
method aims to improve real-time performance
by maintaining a stable frame rate above 15 FPS,
reducing latency, and ensuring smooth operation
without requiring additional sensors or external
hardware.

2 Methodology

This section will explain how the ModAR sys-
tem works to recognize a pattern and overlay a
3D model onto it in real time, especially on low-
end smartphones. ModAR is based on a marker-
based AR (MAR) approach, where a known im-
age called a pattern is used to place virtual ob-
jects in the real world through the phone’s cam-
era [8]. The system assumes the pattern is a flat,
rectangular image. A top-down (nadir) image of
this pattern is needed to initiate the AR process.
In addition to the pattern image, the 3D model
and camera calibration data (i.e., the camera’s
internal parameters) are required to ensure accu-
rate projection.

The center of the pattern is defined as the ori-
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gin point (0, 0, 0) in the world coordinate system
shows in Figure 1. The X and Y axes lie on the
surface of the pattern, while the Z axis extends
perpendicularly outward from the pattern toward
the camera. To simplify calculations and main-
tain consistency across devices, the four corners
of the pattern are normalized relative to the im-
age dimensions. As aresult, their X and Y values
range from —1 to 1, and their Z values are set
to 0. This normalization allows for easy trans-
formation between image coordinates and real-
world coordinates [9]. This setup provides a sta-
ble spatial reference frame, ensuring that virtual
3D objects are anchored correctly and appear
aligned with the physical pattern when viewed
through the camera in real time.

(-W, -H, 0) (W, -H, 0)
Z
\ pattern
> X image
(W, H,0) W, H,0)

Figure 1: World coordinate system setup for the
marker pattern [8].

2.1 Feature Extraction and Image
Matching

To recognize the pattern in the real world,
ModAR starts by detecting special visual fea-
tures unique points like corners or edges—in
the reference pattern image. During runtime, it
looks for those same features in each new frame
captured by the phone’s camera. To do this ef-
ficiently, ModAR uses feature detection and de-
scription methods such as ORB, which combines
the FAST algorithm for finding keypoints and
the BRIEF algorithm for describing them, and
BRISK with AGAST, where AGAST detects the
keypoints and BRISK describes them in a way
that works even when the image is rotated or
scaled. After detecting features in both images,
the system compares them using Hamming dis-
tance, which measures how different the binary
descriptors are. To improve accuracy, it performs
a cross check only keeping matches that are con-
firmed in both directions. It then filters out bad
matches by removing those with large differ-
ences, and applies RANSAC (Random Sample



Consensus) to keep only the best matches that fit
a realistic transformation of the image, helping
the system determine where and how the pattern
appears in the real world [8].

2.2 Pattern Recognition and Camera Pose
Estimate

Once RANSAC finds at least 8 good matches,
the pattern is considered detected, and a 3D
model can be placed on it. RANSAC estimates
a homography matrix that describes how the
pattern image appears in the real-world camera
view. This estimation is refined using the Leven-
berg—Marquardt algorithm, which improves ac-
curacy. To understand how the camera is posi-
tioned and oriented relative to the pattern, the
system calculates the camera’s 6 degrees of free-
dom (6-DOF) pose—its position (X, Y, Z) and
rotation in 3D space. This is done using a pro-
jection transformation matrix, which relates real-
world points to their position in the image. The
rotation matrix is improved using singular value
decomposition (SVD) to ensure it is mathemati-
cally valid. Then it’s converted into a more com-
pact form using the Rodrigues formula, which
helps during optimization [8].

2.3 3D Render

The 3D model used in ModAR is stored in the
.ob7j file format, which includes information
about the model’s shape and its textures. To dis-
play the model, the system first sends the model
data to the GPU using a vertex buffer. For every
frame, it applies a set of transformation matrices
to place and display the model correctly. These
transformations are combined using (1).

Final Position = Projection x View

X Model x Vertex (1)

To make the rendering more efficient, the sys-
tem compresses texture files using techniques
like ETC1 and PVRTC, which reduce mem-
ory usage. It also uses a method called frus-
tum culling, which ensures only the parts of the
model that are visible in the camera view are
drawn—saving processing power. Additionally,
when the same model needs to appear multiple
times or is animated, the system uses geometry
instancing. This allows it to draw many copies of
the same model with just one command, which
helps improve performance[9]. The entire ren-
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dering process runs on a lightweight graphics en-
gine that uses OpenGL ES 2.0, making it suit-
able even for mobile devices with limited hard-
ware[10].

2.4 AR Integration

For AR to work properly, the virtual model must
align correctly with the real world. This is called
registration. The system ensures the 3D model
sits at the center of the pattern, facing the camera
along the Z-axis. Key elements needed for AR
include the estimated camera position and orien-
tation, the camera calibration matrix, the pattern
image, and the 3D model and rendering func-
tions. To coordinate rendering and detection pro-
cesses, semaphores (synchronization tools) are
used. These help avoid overlapping memory us-
age and wasted computing time. When a pattern
is detected, the AR system calculates a model
matrix based on the camera’s pose and applies
the appropriate projection matrix to render the
model in real-time. The projection matrix is
adapted to match OpenGL requirements, ensur-
ing the 3D model appears correctly on screen.
Clipping planes, field of view, and aspect ratio
are also considered to avoid rendering errors due
to depth miscalculations. Finally, shaders are
used to define how the model looks (lighting,
color, texture), and the rendering engine builds
the final AR scene by combining all these com-
ponents[10].

3 Implementation

The ModAR prototype uses OpenCV (C++ via
Android NDK) for computer vision and OpenGL
ES 2.0 for graphics through the Android SDK.
Java communicates with the native C++ code via
JNI, with the C++ compiled into a shared library
using CMake. The 3D engine handles vertices,
models, textures, and shaders[8].

Pattern detection and 3D rendering run si-
multaneously on separate threads, sharing cam-
era position, orientation, and recognition sta-
tus. Semaphores ensure this shared data is safely
managed.

For each camera frame, the app runs camera-
PoseEstimation, which detects features, matches
them to the pattern, and calculates the camera’s
position and orientation. To reduce flickering
from motion blur or noise, the model is displayed
only after two consecutive frames have enough
matches [9].



The 3D rendering runs on its own thread and
is initialized when the graphics engine starts.
The renderer manages things like depth testing
(to correctly show which objects are in front),
culling back faces (to improve performance), and
setting up the viewport when the screen changes.
It loads 3D models, textures, and sets up the
camera using various helper classes. Lighting
and model-view matrices are also prepared to
display the scene properly[10].

The Java side of the app includes classes like
JavaCameraView, which handle camera opera-
tions getting the camera’s projection matrix, in-
trinsic parameters, and capturing frames to send
to the pose estimation process. The Android-
CameraView class converts camera frames into
a format usable by the native code. Finally, the
MainARActivity manages permissions, sets up
views, and controls the overall AR experience.

Table 1: Specifications of low-end and mid-
range test devices.

Specification Low-End Mid-Range
Model Galaxy Ace 2 ZTE Blade A5
Year 2012 2019

CPU 800 MHz dual-core 1.6 GHz octa-core
Chipset ARM Cortex-A9  Spreadtrum SC9863A
GPU ARM Mali 400 IMG8322
Storage 4GB 16 GB
Memory 768 MB RAM 2 GB RAM
Camera 5 MP 13 MP
Video 720x1280, 30 FPS 1080x1920, 30 FPS
Screen Res. 480x800 px 720%1440 px

4 Experimental Results and Discussion

4.1 Experimental Setup

To evaluate ModAR’s performance, a series of
experiments were conducted using two Android
smartphones: one older low-end device and one
affordable mid-range device. The aim was to
understand how hardware specifications impact
the system’s ability to detect patterns and ren-
der 3D models in real time. Both devices sup-
ported OpenGL ES 2.0 and ran at least Android
4.4 KitKat (API level 19). The specifications
of these devices are presented in Table 1. The
testing used six pattern images, whose dimen-
sions and resolutions are presented in Table 2
and four 3D models included with the ModAR
prototype, presented in Table 3. The pattern im-
ages were everyday objects such as book cov-
ers, a board game box, a framed wall painting,
and a graffiti mural, with resolutions ranging
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from 0.07 to 0.25 megapixels. The camera res-
olution was 0.92 MP (720x1280 pixels) on the
low-end device and 2.07 MP (10801920 pix-
els) on the mid-range device, both running at 30
frames per second. The 3D models came from
various sources like image-based photogramme-
try and laser scanning, and they varied in size
and complexity. "POTTERY” and "BUST” were
small models, "STATUE” was a medium-sized
model with vertex color instead of texture, and
"CHURCH” was a large, highly detailed model.
This setup allowed for a detailed performance
assessment of ModAR'’s detection and rendering
processes across different device capabilities[8].

Table 2: Dimensions and resolution of the pat-
tern images used in the experiments.

Pattern Image Dimensions (px) Resolution (MP)
BOTERO 348 x 717 0.25
SCYTHE 300 x 245 0.07
SURVEYING 310 x 450 0.14
JEFFERS 250 x 294 0.07
PAINTING 336 x 252 0.08
GRAFFITI 400 x 347 0.14

Table 3: Size, faces, and vertices of the 3D mod-
els used in the experiments.

3D Model Size (KB) Faces / Vertices
POTTERY 167 3296/ 1661
BUST 903 8767 / 4555
STATUE 1690 21,453/42,712
CHURCH 87 14,645,744 / 7,335,148
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Figure 2: Number of feature points for each pat-
tern image used in the experiments extracted by
the tested detectors with different parameteriza-
tion [8].



Table 4: Parameterization evaluated in the experiments performed using the AGAST detector and the
BRISK descriptor.

Experiment AGAST-BRISK-3 AGAST-BRISK-2
AGAST detection threshold score 30 30
Number of octaves 3 2

Scale applied to the pattern used for sampling the neighborhood of each feature 1 1

Table 5: Average computational time and percentage of CPU usage for ModAR prototypes with
low-end device.

Task AGAST-BRISK-3  AGAST-BRISK-2 _ FAST-ORB-2000  FAST-ORB-500
Time (s) CPU (%) | Time (s) CPU (%) | Time (s) CPU (%) | Time (s) CPU (%)
Feature detection 2425 49.47 2.296 47.73 0.086 12.51 0.069 12.02
Feature description 2.337 4591 2.229 46.69 0.230 32.09 0.189 34.29
Image matching 0.029 0.53 0.026 0.43 0.020 2.82 0.016 3.20
Homography estimation 0.089 1.49 0.063 1.31 0.098 19.37 0.035 6.30
4.2 Image Matching and Pattern features as binary strings for fast Hamming-
Recognition distance matching. In addition, FAST-ORB does
not require the extensive sampling of multi-
Two main types of algorithms for detecting fea- ple scales and orientations like AGAST-BRISK,
tures in images such as AGAST-BRISK and which significantly reduces computation. In con-
FAST-ORB were tested. There are four different trast, AGAST-BRISK involves more computa-
setups, including AGAST-BRISK-2, AGAST- tionally intensive operations for both detection
BRISK-3, FAST-ORB-500, and FAST-ORB- and description, increasing CPU load. This com-
2000.  Among these, FAST-ORB-2000 per- bination makes FAST-ORB significantly lighter
formed the best overall. It offered a good bal- and more suitable for low-end devices. The
ance between speed and accuracy, worked well pattern recognition was almost perfect, reaching
on both low-end and mid-range phones, and was close to 100% accuracy, as long as the pattern ap-
able to recognize patterns even if they were ro- peared in the camera frame at least half as large
tated or smaller. FAST-ORB-2000 took a bit as its original size.This information is presented
longer—around 0.4 seconds per frame on the in Table 5 for the low-end device and in Table 6
low-end device and 0.35 seconds on the mid- for the mid-range device. This means the sys-
range but gave more reliable and consistent pat- tem works best when the pattern was reasonably
tern detection[8]. The AGAST-BRISK parame- visible and not too small[8].
terization evaluated in the experiments is shown The best method for pattern recognition in
in Table 4. The number of feature points ex- ModAR is FAST-ORB-2000 because it is fast,
tracted for each pattern by the different detectors stable, and highly accurate. The AR system
is illustrated in Figure 2. performs well with small and medium-sized 3D
The CPU and time usage results showed that models, even on older smartphones. However,
the AGAST-BRISK methods used nearly 95% of when using large 3D models, the performance
the CPU, which is very high and not efficient decreases due to limitations in the GPU and
for mobile devices. In contrast, the FAST-ORB memory. To ensure smooth operation on low-
methods only used about 50% of the CPU, mak- end devices, optimization techniques such as
ing them much more efficient for real-time use. instancing and grouping Vertex Buffer Objects
The observed efficiency of FAST-ORB com- (VBOs) are crucial. These optimizations help
pared to AGAST-BRISK can be explained by the system run efficiently and provide a better
its algorithmic design. FAST detects corners us- AR experience on less powerful phones.
ing simple intensity comparisons around a pixel, The AR system ran at 16 to 24 frames per
avoiding the complex multi-scale keypoint de- second (FPS), which is generally acceptable for
tection required by AGAST. ORB then uses the real-time use. Smaller and medium-sized mod-

lightweight BRIEF descriptor, which encodes els, like “POTTERY” and “STATUE,” were ren-
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Table 6: Average computational time and percentage of CPU usage for ModAR prototype with

mid-range device.

Method AGAST-BRISK-3

Time (s)

AGAST-BRISK-2
CPU (%) | Time (s)

FAST-ORB-2000 FAST-ORB-500
CPU (%) | Time (s) CPU (%) | Time (s) CPU (%)

1.926
1.795
0.027
0.080

49.52
45.50
0.53
1.50

Feature detection
Feature description
Image matching
Homography estimation

1.851
1.656
0.023
0.050

47.70 0.069 14.21 0.057 10.33
46.51 0.194 37.46 0.155 35.25
0.41 0.070 13.94 0.012 3.40
1.28 0.023 3.89 0.026 5.30

dered quickly and smoothly on both devices.
However, the large “CHURCH” model caused
noticeable slowdowns, especially on the low-
end phone. To improve performance, optimiza-
tion techniques such as instancing which allows
drawing many copies of the same object in a sin-
gle call and organizing the models into a sin-
gle memory buffer called a Vertex Buffer Object
(VBO). These optimizations improved rendering
performance by up to 3.7 times on low-end de-
vices[8].

GPU performance and CPU profiling results
are presented in Figure 3, and memory profiling
for the large 3D model “CHURCH?” is shown in
Figure 4. These results highlight that while CPU
usage was significant, the main challenge lay in
GPU memory and rendering. By applying opti-
mization strategies, it became possible to achieve
smoother frame rates and reduce resource con-
sumption, even on constrained hardware. This
demonstrates the importance of efficient GPU
memory management for making marker-based
AR systems practical on low-end smartphones.
Furthermore,these findings confirm that targeted
optimizations can significantly extend the usabil-
ity of AR applications on budget devices without
requiring additional hardware support.

5 Conclusion

In conclusion, this review demonstrates that
marker-based augmented reality can work ef-
fectively on low-end smartphones despite their
limited processing power and hardware. Effi-
cient algorithms such as FAST, ORB, OpenGL
ES 2.0, geometry instancing, and frustum culling
enable AR systems to achieve good accuracy and
smooth performance. The research also high-
lights the importance of designing AR systems
that account for device diversity and user needs.
Focusing on lightweight methods and perfor-
mance improvements can help marker-based AR
reach everyone, bridging the digital divide and

Low-End Device Mid-Range Device

Pattern Recognition Loading Display Pattern Recognition Loading Display

FPS 25 18 17 30 24 23
Time (s) 0 17 18 0 12 12

Stutters

CPU load

POTTERY T ‘
(0-40's)

FPS 26 12 10 29 24 20
Time (s) 0 28 30 0 25 27

Stutters. - 3 - 1

BUST TITIN\ANTIVT A A
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(0-40's)
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CPU load
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FPS 28 9 8 30 15 13
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CHURCH

CPU load
(0-40's)

Figure 3: GPU performance and CPU profiling
results during the graphics computations of four
AR sessions [8].

LOW-END

MID-RANGE

[l ]

Figure 4: Memory profiling of the “CHURCH”
3D Model: [a] 40s timeline upon pattern recog-
nition with the memory allocation of the main
memory types; [b] graphics objects and classes
with the most heap count [8].

79



expanding opportunities for users globally.
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Abstract

Flash flood is a significant natural hazard in
Cambodia, causing severe damage to infrastruc-
ture and posing a substantial risk to human life.
Its sudden and unpredictable occurrence, inten-
sified by climate change, underscores the need
for reliable real-time monitoring and early warn-
ing systems. This paper presents an Internet of
Things (IoT)-based solution that employs mul-
tiple sensors to capture critical environmental
data, including water level, rainfall, and water
flow. The system is designed with an empha-
sis on accuracy, durability for outdoor condi-
tions, and cost-effectiveness, making it suitable
for deployment in vulnerable communities. Sen-
sor data are transmitted to a cloud platform for
storage and analysis, while a real-time notifi-
cation mechanism delivers early alerts to users,
enabling them to respond promptly to potential
flood events. The proposed prototype provides
a practical and affordable approach to enhancing
community preparedness, awareness, and disas-
ter risk reduction in flood-prone regions.
Keywords: Flash flood, 10T, early warning

1 Introduction

Flooding remains one of Cambodia’s most de-
structive natural hazards, affecting urban and ru-
ral populations during the rainy season. The
2022 floods affected 14 provinces, demonstrat-
ing the country’s vulnerability to sudden flood
events [1]. Urban areas are particularly prone to
street-level flooding when intense rainfall over-
whelms drainage systems, while rural and river-
ine regions can experience rapid river surges
that threaten communities near tributaries such
as the Stoeng Prek Thnaot Basin [2], [3]. In
Phnom Penh city, intense rainfall, specifically
flash flood, often overwhelms drainage infras-
tructure and causes street-level inundation, dis-
rupting transportation and damaging property
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[1]. Figure 1 shows urban flash flooding in Ph-
nom Penh that illustrates the rapid onset and lo-
cal impacts of such events.

Figure 1: Street-level flash flooding in Phnom
Penh, Cambodia [4].

Additionally, riverine and basin-scale flooding
are also recurrent problems, especially in trib-
utaries such as the Stoeng Prek Thnaot Basin.
Hydrological studies of the Prek Thnaot basin
highlight changing water-balance regimes and
increased extremes under climate-change sce-
narios, underscoring the need for localized mon-
itoring and early warning [3], [7]. Existing
flood monitoring solutions in Cambodia and
neighbouring countries rely primarily on manual
water-level measurements or basic sensor net-
works [2], [S]. Although these approaches pro-
vide some awareness, they often lack real-time
monitoring, predictive capabilities, and cost-
effectiveness, which limits their usefulness for
widespread deployment. To address these gaps,
this paper proposes an integrated, real-time flash
flood monitoring system based on Internet of
Things (I0T) technology. The system collects
key environmental data such as water level, rain-
fall, and water flow and delivers real-time alerts
through a cloud-based notification mechanism.

The objective of this study is to develop a
practical, durable, and cost-effective IoT system
suitable for communities in flood-prone areas,
with a pilot implementation focused on the Sto-
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eng Prek Thnaot Basin. The development proto-
types compose of Node MCUs and various sen-
sors to keep track on the current water level. The
system will provide alert notifications via mobile
app when serious flooding is happening from the
real-time IoT system.

2 Methodology

Prototype systems utilize ESP32 Node MCU,
sensors, and cloud platforms to enable near-real-
time data acquisition and notification [2], [8],
[9]. Reviews of digital innovations for flash-
flood early warning observe two clear trends in-
cluding, increased adoption of cloud-backed IoT
sensor networks for situational awareness, and
expanding use of AI/ML for prediction [6], [10].
These studies suggest that a pragmatic approach
is to pair robust, low-cost sensing with cloud
messaging and simple local alerts, reserving pre-
dictive analytics for later enhancement. Despite
progress, important gaps remain for practical de-
ployment in Cambodia, specifically many pro-
totypes are validated only under controlled con-
ditions rather than diverse field settings and the
assumption of good internet connectivity. This
consideration reduces reliability in areas with
intermittent service, and the issues of cost and
long-term durability are not always fully ad-

dressed [2], [5].

Sensor Data Collect
(raindrop, water flow, water level)

I

Firebase Cloud
Platform

Identify Risk Level
(Low, Medium, High)
I

On-site Notification Real-time Notification
(Siren Sound/Flashlight Alert) (Mobile App/Telegram)

Figure 2: A flow diagram of the system opera-
tional process.

The proposed flood monitoring system is de-
signed to provide real-time and reliable alerts
for flood-prone areas by combining on-site data
collection, wireless transmission, cloud integra-
tion, and two-way notification methods. Figure
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2 shows the operational design of our system
to handle detection and notification tasks. The
transmitter node integrates three main sensors in-
cluding raindrop sensor, water flow sensor, and
an ESP32-CAM for capturing water level im-
ages. The receiver node serves as a gateway to
relay the sensing data to be stored and processed
with Firebase Cloud Messaging to enable near
real-time notification via mobile or web applica-
tions. Simultaneously, the receiver triggers of-
fline alerts, such as buzzers or flashing lights,
to ensure immediate warnings even without in-
ternet access. This dual-alert mechanism guar-
antees timely and reliable flood notifications to
users under all conditions.

3 Design and Implementation

The system is designed to provide real-time
monitoring of flood-prone areas and deliver early
alerts to users. It consists of two main units
a transmitter and a receiver shown in Figure
3. The transmitter collects environmental data
using sensors, while the receiver processes the
data, stores it in the cloud, and triggers alerts.
Wireless communication between the units is
handled via the ESP-NOW protocol, and Fire-
base is used for cloud-based monitoring and on-
line notifications. The core components of the
proposed system include the ESP32 microcon-
troller, which serves as the central controller
for data acquisition and wireless communica-
tion, and an ESP32-CAM module for capturing
water-level images. Environmental sensing is
carried out using a raindrop sensor to detect rain-
fall and a water flow sensor to measure stream
or drainage velocity. The receiver unit inte-
grates with Firebase for cloud storage and notifi-
cation services, while local alert devices such as
buzzers or flashing lights ensure immediate of-
fline warnings. A rechargeable battery or solar
power source sustains continuous outdoor opera-
tion, making the system suitable for deployment
in remote or flood-prone areas.

To demonstrate the cost-effectiveness of the
proposed prototype, Table 1 summarizes the
component-level cost breakdown in USD. The
total cost of the system is approximately $33,
which is significantly lower than previously re-
ported IoT-based flood monitoring systems cost-
ing $100-$150 per unit [2; 8]. This cost-efficient
design supports the claim that the proposed sys-
tem is low-cost and practical for community-



Table 1: Cost breakdown of the proposed IoT flood monitoring prototype (USD).

Component Quantity Unit Cost (USD) Total Cost (USD)
ESP32 NodeMCU 1 5 5
ESP32-CAM 1 10 10
Raindrop Sensor 1 2 2
Water Flow Sensor 1 5 5
Battery / Power 1 8 8
Enclosure / Box 1 3 3
Total 33

Transmitter

Water Level

(=)

()

(
Raindrop Sensor

(a)

)|
'} | ((( internet ))) Notify

Power Source / N

(b)

Figure 3: Design schematic: (a) Transmitter

node, (b) Receiver node.

level deployment.

The system continuously monitors environ-
mental conditions at flood-prone locations. The
receiving sensor data will be transferred to the
Firebase cloud database through an internet con-
nection, enabling real-time remote monitoring.
From this data, we can analyze the risk levels
and generate appropriate online notifications via
Firebase Cloud Messaging on mobile or web
applications. Simultaneously, the receiver trig-
gers offline alerts, such as buzzers or flashing
lights, to provide immediate warnings even with-
out internet connectivity. This dual-alert mech-
anism ensures timely and reliable flood notifica-
tions under diverse operating conditions. Figure
4 shows the complete design of the prototype en-
closed in a plastic box for outdoor deployment
purposes.
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Figure 4: Prototype development:
node boxes, (b) complete prototype.

(a) sensor

4 Results and Discussion

The prototype was developed and tested to con-
firm that all core sensors were functioning cor-
rectly. Test scenarios simulated heavy rainfall,
rising water levels, and varying flow rates in
local drainage channels. In all cases, the sys-
tem generated accurate and timely alerts, demon-
strating its effectiveness for real-time monitor-
ing and early warning in both urban and rural
areas. The results confirm that the system pro-
vides real-time situation awareness and reliable
early flood warnings.

Figure 5 presents the web-based dashboard in-
terface designed for real-time monitoring of en-
vironmental data from the sensor nodes. The
dashboard provides a centralized platform where
water level, rainfall, and flow rate measurements
are visualized through graphical charts and nu-
merical indicators. This visualization facilitates
user-friendly access to critical information, en-
abling stakeholders to track flood conditions re-
motely and respond effectively. Furthermore, the
dashboard integrates alert notifications, thereby
enhancing situational awareness and supporting
timely decision-making in flood-prone areas.



use, Hydro Alert Data Portal

Flood Alert
€ Dashboard

‘& Flood Alert

AGE

Q LivecCv TELEGRAM

& sign out

ee our guideline

Water Flow

Aggregate

2092.8 2092.8

Raindrop

3072.73

Figure 5: Web dashboard illustrating the feature
and visualization of data monitoring for sensor
node.

5 Conclusion

This study presented an loT-based flash flood
monitoring and early warning system that inte-
grates an ESP32 microcontroller, ESP32-CAM,
rainfall sensor, a water flow sensor, and cloud
services through Firebase. The prototype
demonstrated reliable data acquisition, real-time
transmission, and a dual-alert mechanism that
ensures both online and offline notifications,
making it suitable for deployment in flood-prone
areas. Its low cost, durability, and continuous
operation capability highlight its potential as a
practical solution for community-level disaster
preparedness.

6 Future Works

Future improvements include integrating predic-
tive algorithms for enhanced forecasting, and op-
timizing power consumption to extend deploy-
ment duration and improve sustainability for out-
door operation. The enhancement of the system
through predictive analytics and broader system
integration. Specifically, artificial intelligence
(AI) and machine learning (ML) techniques will
be incorporated to enable forecasting capabili-
ties, moving beyond the current threshold-based
detection approach. By leveraging historical
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hydrological records alongside real-time sensor
inputs, the system can generate more accurate
flood predictions and provide earlier warnings.
These advancements will improve system re-
silience and strengthen its role as a comprehen-
sive solution for flood risk reduction.
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Abstract

The creation of large scale annotated Khmer
datasets is a key challenge for advancing Artifi-
cial Intelligence and Natural Language Process-
ing (NLP) in Cambodia. We present the Khmer
Sense Text Annotation Tool, which integrates a
YOLOVS detection model trained on 12,000 im-
ages with Khmer Tesseract OCR and a human
in the loop correction process. Evaluation us-
ing Intersection over Union (IoU), Precision, Re-
call, Confusion Matrix, and mean Average Pre-
cision (mAP) shows higher precision in detect-
ing stacked characters and complex script struc-
tures while reducing manual labeling effort. The
system demonstrates consistent improvements in
both annotation speed and label accuracy com-
pared to manual-only workflows. By focusing
on Khmer’s unique challenges, including the ab-
sence of word boundaries and character stacking,
the tool enables more reliable dataset construc-
tion. This contribution not only accelerates re-
source development but also lays the foundation
for future Khmer NLP advancements through
deeper model integration.

Keywords:  Optical Character Recognition
(OCR), Natural Language Processing (NLP),
Annotation Tool, Text Recognition, Low-
Resource Languages

1 Introduction

The creation of annotated datasets is essential
for developing reliable Al systems, yet building
such resources for non-Latin scripts like Khmer
remains challenging due to stacked characters,
diacritics, and the absence of word boundaries.
Traditional annotation tools such as VIA [1] or
LabelMe [7] are primarily designed for general-
purpose image annotation and are often used for
diverse applications. However, they lack specific
support for Khmer text, particularly for complex
sense-text structures, making annotation slow
and error-prone.
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Recent surveys highlight the growing role of
machine learning in auto-labeling tasks across
images, audio, and text [2], but low-resource lan-
guages remain underserved. Advances in deep
learning [3] and object detection techniques, in-
cluding fully convolutional neural networks [6]
and transfer learning [5], have shown strong per-
formance in annotation-related tasks. Similarly,
OCR systems have become essential for convert-
ing visual text into machine-readable form [4].
Nevertheless, these technologies have not been
fully adapted to the unique challenges of Khmer
script.

To address this gap, we propose JOMNAM,
a model-assisted annotation tool specifically de-
signed for Khmer sense-text annotation. JOM-
NAM integrates a fine-tuned YOLOvV8 model
with Khmer Tesseract OCR [12] and supports
human-in-the-loop verification, providing both
automation and accuracy.  Unlike general-
purpose tools, JOMNAM focuses on the par-
ticular needs of Khmer text, including stacked
characters and diacritics, accelerating dataset
creation and improving annotation consistency.
By combining automation with expert over-
sight, JOMNAM contributes to the development
of robust Khmer NLP resources and enables
scalable, high-quality language technologies for
low-resource scripts.

2 Related Work

Several open-source annotation tools have been
developed to support dataset creation in com-
puter vision and multimedia domains. LabelMe
[7] provides polygon and bounding box anno-
tation for object detection and image segmen-
tation, while the VGG Image Annotator (VIA)
[1] offers a lightweight, browser-based frame-
work that requires no installation and supports
multiple annotation shapes for images, audio,
and video. More advanced systems such as
CVAT [8], originally developed by Intel, extend
these capabilities with industrial-grade features,



including large-scale project management, team
collaboration, and support for complex annota-
tion tasks across video and 3D data. Although
these tools demonstrate scalability and efficiency
in visual domains, they are primarily optimized
for images and high-resource languages, with
limited or no support for complex scripts. In
the case of Khmer, challenges such as stacked
characters, diacritics, and the absence of explicit
word boundaries demand specialized annotation
frameworks [23][24][25][26]. Unlike general-
purpose tools, a Khmer-focused system must in-
tegrate both text-specific handling and automatic
labeling to reduce the burden of manual anno-
tation. Our proposed tool builds on these in-
sights by extending the strengths of open-source
annotation environments while tailoring them
to the linguistic and structural characteristics
of Khmer sense text, thereby addressing a gap
left by existing platforms. We also note com-
plementary NLP and multimodal tools, includ-
ing BRAT, WebAnno, INCEpTION, Prodigy,
and ELAN [17][18][19][20], and recent web-
based speech/audio annotation platforms such
as Audino [22]. In multilingual modeling for
low-resource languages, we reference mBART,
mT5, and NLLB [13][14][15], as well as meta-
learning for low-resource NMT [16].

3 Methodology

3.1 Data Preparation

Since there is no publicly available dataset for
Khmer sense-text annotation, a new dataset was
created as part of this work. In total, 12,000
text samples were collected, of which 6,000 were
prepared during an earlier school project and an
additional 6,000 were gathered specifically for
this study. The dataset was designed to cap-
ture linguistic diversity, including variations in
stacked characters, diacritics, and different writ-
ing contexts, which are essential challenges in
Khmer text processing.

All images were carefully cleaned to remove
duplicates, corrupted entries, and non-Khmer
content. The final dataset was organized into
sense-level categories according to the annota-
tion guidelines defined in this work. Figure 1
illustrates randomly selected examples from the
dataset.

Following data visualization, the dataset was
divided into three subsets for experimentation:
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70% for training, 20% for validation, and 10%
for testing. This split ensures a robust training
process while preserving sufficient data for hy-
perparameter tuning and final evaluation. Stan-
dard preprocessing steps, including text normal-
ization, Unicode handling for stacked diacritics,
and one-hot encoding of class labels, were ap-
plied. In addition, data augmentation techniques
such as synthetic sentence generation and back-
translation were explored to improve model gen-
eralization and address the limited size of labeled
Khmer data.
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Figure 1: Example of Khmer Sense Text

3.2 Pre-trained Model

For this study, we adopt YOLOVS as the pre-
trained model to support Khmer sense-text an-
notation. YOLOVS is an object detection frame-
work that balances accuracy and efficiency [9].
It builds on the reputation of the YOLO family
for real-time performance, integrating detection
into a single neural network rather than multiple
stages. This allows the model to achieve high
detection speed and strong localization accuracy,
making it suitable for tasks such as document
analysis and text detection [10][11].

YOLOVS8’s architecture consists of three com-
ponents: a backbone for extracting features, a
feature pyramid network (FPN) for multi-scale
fusion, and detection heads for bounding-box re-
gression and classification. The FPN in particu-
lar enhances detection of small or complex ob-
jects, which is important for stacked characters
and diacritics in Khmer script. Predictions are
optimized through a compound loss that com-
bines classification and regression terms.

A key advantage of YOLOVS is its trans-
fer learning capability, as pre-trained on large
datasets such as COCO or ImageNet [5]. These
can be fine-tuned for Khmer data, where an-
notated resources are limited [2]. By adapting
YOLOVS to our dataset, the model learns script-



specific features, including irregular spacing and
stacked glyphs not commonly present in Latin-

based writing systems.
©
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Figure 2: YOLOVS architecture [28].

3.3 Model Evaluation

Model evaluation is a crucial phase in the ma-
chine learning workflow, as it demonstrates the
model’s ability to generalize to unseen data and
ensures reliability for real-world annotation. In
this study, we adopt both classification-based
metrics and detection-based metrics to com-
prehensively assess YOLOVS8’s performance on
Khmer sense-text annotation.

The evaluation metrics used include:

Accuracy: The proportion of correctly identi-
fied text regions out of all predictions.

TP+TN
TP+ FP+FN+TN

Accuracy = (D
Precision: The ratio of correctly detected text
regions to all predicted regions.

TP

e —— 2
TP+ FP )

Precision =
Recall: The ratio of correctly detected text re-
gions to all ground-truth regions.

TP

Recall = 751§

3)

F1-Score: The harmonic mean of precision
and recall, providing a balanced measure.

Fl— 9« Precision x Recall

“

Precision + Recall

Intersection over Union (IoU): Measures the
overlap between predicted bounding boxes.

oU — Area of Overlap

&)

Area of Union
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Mean Average Precision (mAP): The av-
erage precision computed across multiple IoU
thresholds (e.g., 0.50 to 0.95). We follow the
COCO-style evaluation for mAP at multiple IoU
thresholds (0.50:0.95) [27].

N
1
mAP = ~ ; AP, (6)

Here, T'P refers to true positives (correctly de-
tected text regions), T'N to true negatives (non-
text correctly identified), F'P to false positives
(wrongly predicted text), and F'N to false neg-
atives (missed text regions). These metrics pro-
vide a balanced view of both detection accuracy
and robustness.

3.4 Experiments and Results

We conducted three experiments using different
dataset sizes, denoted as Aksorvl, Aksorv2, and
Aksorv3, to evaluate the effectiveness of the pro-
posed system. All experiments were performed
on a workstation equipped with an NVIDIA
RTX 4060Ti GPU (8GB VRAM), 32GB RAM,
and Intel Core 15-14400F CPU (14th Gen). Each
dataset was split into 70% for training, 20% for
validation, and 10% for testing. The same hyper-
parameter settings were used across experiments
to ensure fairness. Model performance was eval-
uated using mAP@0.5:0.95, mAP@0.5, Recall,
runtime, and parameter count.

As shown in Table 1, scaling up the dataset
improved performance across all metrics. Ak-
sorv3 achieved the highest results with an
mAP@0.5 of 0.8615, recall of 0.8197, and
mAP@0.5:0.95 of 0.5981, clearly outperforming
Aksorvl and Aksorv2. Although training time
increased with larger datasets, the accuracy gains
justified the additional computation, highlighting
the importance of dataset scale for Khmer text
detection.

To analyze training dynamics, Figure 3 shows
the loss and evaluation curves for Aksorv3. The
plots demonstrate stable convergence with con-
sistent improvements in precision, recall, and
mAP throughout training, confirming the robust-
ness of the fine-tuned YOLOvVS8 model.

As shown in Table 1, the performance im-
proves when scaling to a larger dataset. In
particular, Aksorv3 achieves the best results
with mAP@0.5:0.95 of 0.59813, mAP@0.5 of
0.86154, and recall of 0.81974, outperforming



Table 1: Performance comparison of YOLOVS fine-tuning on different Khmer text datasets.

Model Dataset Size mAP@0.5:0.95 mAP@(0.5 Recall Run Time (H) Parameters (M)
Aksorvl 6023 0.58531 0.83507  0.81660 2.38 2.6
Aksorv2 7823 0.57226 0.84611  0.80619 2.53 2.6
AKksorv3 13846 0.59813 0.86154  0.81974 5.43 2.6
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Figure 3: Multi-plot figure of Aksor V3

both Aksorvl and Aksorv2. Although train-
ing time increased with dataset size (from 2.38h
to 5.43h), the accuracy gains justify the cost,
demonstrating the importance of larger anno-
tated resources for Khmer text detection.

4 System Design

User's Cloud
Storage

Firebase Auth

Provider Firebase Cloud
VI

Messaging
A

‘ Annotation ‘ ‘ Review l ~

Unread

d Message

MongoDB

Figure 4: System flow diagram of JOMNAM.

The JOMNAM system, illustrated in Figure 4,
is a modular, cloud-centric architecture designed
to support secure and efficient annotation of
Khmer sense text. Users access the system
through authenticated client applications using
Firebase Authentication. Annotation tasks are
managed within the system, with model-assisted
suggestions and human-in-the-loop review to en-
sure high-quality outputs. Structured project
metadata and annotations are persisted in Mon-
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goDB, while associated media files are stored in
the user’s cloud storage, reducing server over-
head. Automation is integrated via n8n, which
monitors storage changes and triggers necessary
processes. Finally, Firebase Cloud Messaging
(FCM) delivers real-time notifications to client
applications, keeping users informed of task up-
dates and system events.

4.1 Key Features

JOMNAM is designed as a centralized model-
aided annotation platform to address the unique
challenges of Khmer sense-text annotation. It
combines project management with model-
assisted annotation, using a fine-tuned YOLOvS8
model for text region detection and Khmer
Tesseract OCR for recognition. Annotators re-
view and correct model-generated labels through
a human-in-the-loop process, which reduces
manual effort while maintaining high quality.
The system also supports full Unicode normal-
ization for Khmer script and is containerized
with Docker to simplify setup and deployment.

4.2 Data Storage

Unlike traditional annotation platforms that
manage and persist all media files within a cen-
tral server, JOMNAM adopts a lightweight stor-
age design. User-uploaded images are saved di-
rectly to their own local storage either Google
Drive, One Drive, while the backend only keeps
references (e.g., file IDs, paths, or hashes) in
a structured database for project and annota-
tion management. This approach reduces server
overhead, preserves user privacy, and gives an-
notators full control over their data. By decou-
pling media storage from metadata management,
the system ensures scalability, portability, and
easier integration with existing user workflows.

4.3 Server Side

The server side of JOMNAM is implemented us-
ing a Node.js and Express backend running in-
side Docker containers. Unlike traditional ar-
chitectures that rely on additional layers such as



NGINX or Flask-based services, JOMNAM pro-
vides a lightweight yet extensible API layer that
directly manages user authentication, project
workflows, and annotation requests.

4.4 Client Side

The client side of JOMNAM is developed us-
ing React, providing a modular and responsive
interface for annotation. React’s component-
based structure enables smooth integration with
the backend API and ensures efficient render-
ing of project dashboards and annotation panels.
Importantly, the system is designed to be flexi-
ble: users can either access a centralized deploy-
ment or host the tool locally, allowing them to
customize and modify the interface to meet their
own requirements.

4.5 Comparison with Existing Tools

To address feedback regarding comparative per-
formance, we conducted a small evaluation be-
tween JOMNAM and the VGG Image Annota-
tor (VIA), one of the most widely used manual
annotation tools. The comparison focused on
annotation time and correction effort for Khmer
scene-text images.

Manual annotation speed is essentially the
same across VIA and JOMNAM, as both rely
on human-drawn bounding boxes. However,
when using model-assisted annotation, JOM-
NAM reduces average annotation time by ap-
proximately 4-5 seconds per image, due to au-
tomatic bounding-box proposals from YOLOVS.

It is worth noting that while model-assisted
detection speeds up the process, the Khmer
Tesseract OCR still produces low-confidence
text predictions, requiring human verification.
As a result, the primary time savings come from
faster region detection rather than text transcrip-
tion.

5 Discussion

Our experiments demonstrate that modern deep
learning models can be adapted to Khmer when
carefully tuned with script-specific adjustments.
The integration of YOLOvVS with Khmer OCR
effectively addresses the challenges of stacked
characters and diacritics, while human-in-the-
loop verification provides a practical balance be-
tween automation and accuracy. These find-
ings highlight that annotation efficiency can be
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substantially improved without sacrificing qual-
ity, making JOMNAM a valuable tool for low-
resource language settings.

Nevertheless, some limitations remain. Per-
formance is tied to the size and diversity of
the training data, and while larger datasets im-
proved accuracy, collecting such resources is
time-consuming. In addition, although our sys-
tem is modular and extensible, reliance on pre-
trained models may still leave gaps for highly
domain-specific texts. Finally, annotation qual-
ity depends on user expertise, suggesting that
further optimization of the correction interface
could enhance usability.

6 Limitations

Despite promising results, JOMNAM has several
limitations. First, its performance is still con-
strained by the size and diversity of available
training data, suggesting that larger and more
varied datasets are required to further improve
accuracy. Second, the system currently struggles
with handwritten Khmer text, which remains a
major challenge for OCR and detection models.
Finally, certain complex scene conditions, such
as noisy backgrounds or highly stylized fonts,
remain difficult to handle and will require addi-
tional model tuning.

7 Conclusion

This paper introduced JOMNAM, a Khmer
scene-text annotation tool that integrates
YOLOvVS8, Khmer Tesseract OCR, and human-
in-the-loop verification to reduce manual effort
and improve annotation consistency. Exper-
iments on a 12,000 sample dataset showed
reliable detection of complex Khmer scripts,
confirming the effectiveness of our approach.

8 Future Work

Future work will focus on addressing the limita-
tions identified in our discussion. Expanding the
dataset with more diverse and domain-specific
samples will strengthen model robustness. We
also aim to improve the annotation interface to
further reduce reliance on expert annotators, and
to explore semi-supervised and active learning
strategies for better scalability. Finally, extend-
ing the system beyond text to include audio and
multimodal annotation will broaden its applica-
bility for low-resource languages.



Table 2: Comparison of annotation tools

Tool Open Source Automation Annotation Store Dataset Private Storage Khmer Model Support
LabelMe v X X X X
VIA v X v v X
CVAT v v v v X
BRAT v X v v X
INCEpTION v X v v X
Jomnam v v v v v
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Abstract

Automated systems for under-resourced lan-
guages like Khmer Sign Language require real-
world robustness, a factor often overlooked in fa-
vor of accuracy on clean data. This study eval-
uates deep learning models on both a large, cu-
rated dataset of 33 Khmer consonant signs and
a manually created ”Challenge Set” featuring
realistic degradations. We systematically com-
pared unimodal (Vision-Only, Skeleton-Only)
and various multi-modal fusion architectures
(MLP, LSTM, Attention). Our findings were
decisive and counter-intuitive. = A unimodal
Skeleton-Only (LSTM) model was the most ro-
bust, achieving 81% accuracy on the Challenge
Set. In stark contrast, all multi-modal fusion
models, which combined skeletal data with fea-
tures from a pretrained EfficientNetBO, under-
performed significantly, with an advanced at-
tention model collapsing to just 11% accuracy.
We identify this failure as a critical case of
”Modality Mismatch,” where the brittle vision
model produces erroneous, high-confidence fea-
tures ("Confident Garbage”) that degrade the fu-
sion process. This work proves that for applica-
tions with a significant domain shift, a simpler,
more robust unimodal model can be decisively
superior to a complex multi-modal system, chal-
lenging the assumption that more data is always
better.

Keywords: Deep Learning, Machine Learning
(ML), Convolutional Neural Network (CNN),
Mediapipe, Sign Language, Classification

1 Introduction

A person who is not able to hear as well as
someone with normal hearing is said to have
hearing loss, usually called deaf or hard-of-
hearing. Those people use Sign language as the
primary means of communication, yet the lack
of widespread understanding often create signif-
icant barriers in education, healthcare and daily
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life. This communication gap can lead to social
isolation, reduced opportunities, and limited ac-
cess to essential services. Despite the serious of
this issue, it is often overlooked and the public
awareness is remaining low. However, only a
small percentage of people are capable of using
sign language, most of whom are either members
of the deaf community or professionals working
in the interpreting field. Hard-of-hearing refers
to people with hearing loss ranging from mild to
severe. It can start from one ear or both, leading
to difficulty in hearing for conversation, speech,
or loud sounds. The use of sign language by deaf
and hard-of-hearing people plays a vital role in
the interaction of communities around the world.
According to the World Federation of the Deaf,
there are approximately 70 million Deaf individ-
uals worldwide (2024) [1] . There are more than
300 distinct sign languages around the world, as
each county has its own grammar and lexicon
that is inspired by their spoken language (UN,
2024) [2].

Figure 1. On the International Day of the Deaf
at the Ministry of Social Affairs [3]

The Institute of Statistics of the Ministry of
Planning has stated that there are 19,993 deaf
or hard-of-hearing people, which is equivalent
to 2.9% of the total population in Cambodia re-
ported by the census [3].

According to the World Health Organization



(WHO, 2025) [4], the causes of hearing loss
and deafness can be classified based on different
stages of life. Prenatally, they may be due to
genetic factors or infections such as rubella.
Perinatal risks include birth asphyxia, jaundice,
low birth weight, and related complications.
In childhood and adolescence, chronic ear
infections and meningitis are key contributors.
In adulthood and older age, hearing loss may
stem from chronic diseases, lifestyle factors,
or age-related conditions. Across all stages,
factors such as ear trauma, noise exposure,
ototoxic drugs or chemicals, poor nutrition, and
progressive genetic conditions can also lead to
hearing impairment.

The deaf and hard-of-hearing (DHH) commu-
nity share various experience of discrimination,
stigma and prejudice from hearing people with
other linguistically and culturally minority hear-
ing groups in the United States and organiza-
tional networks [5]. For example, a DHH per-
son may have trouble communicating with their
hearing family members, suffer from bullying at
school, or encounter a conflict between their own
values as a DHH individual and the values and
expectations of others in their environment [6].

Hearing loss impacts multiple dimensions of
life, including individual, social, and societal
levels. At the individual level, it leads to lim-
itation in communication and speech develop-
ment, along with adverse effects on cognitive
functioning. On the social level, DHH indi-
vidual frequently experience isolation, loneli-
ness and stigma. For the societal level, DHH
people encounter barriers in accessing educa-
tion and employment, resulting in reduced work-
force participation and increase economic bur-
den. From a public health perspective, hear-
ing loss substantially increases years lived with
disability (YLDs) and contributes to disability-
adjusted life years (DALYSs), highlighting its se-
rious global impact (World Health Organization,
2021) [7].

Assistive devices include hearing aids, and
cochlear implants provide important support for
people with DHH. However, these solutions are
not universally accessible or effective for every-
one because the World Health Organization es-
timates that only about 3% of the need for hear-
ing aids has been provide, leaving a large portion
of people without adequate support [8]. Olkin
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Figure 2. UN providing hearing aid [8]

(2002) highlighted that many professional train-
ing sites lack adequate support for deaf individu-
als, noting that about 80% were missing essential
tools like teletypewriter (TTY) systems, which
hinder equal participation for trainees with hear-
ing loss. [9].

In order to improve sign language learning for
all groups, Dr. Naa claims that machine learning
and related technologies can be used to translate
sign language into words and vice versa [10].

Despite the growing advancement of sign lan-
guage recognition worldwide, Khmer Sign Lan-
guage (KSL) remains a low-resource language,
constrained by limited datasets and insufficient
technological support. Currently, no robust KSL
recognition system exists in Cambodia that can
effectively translate gestures into text. This
scarcity creates substantial barriers to accessibil-
ity and inclusion for the deaf community.

This research aims to address this gap by de-
veloping machine learning models capable of
translating KSL into text. The proposed sys-
tem seeks to advance sign language recognition
in low-resource contexts, such a system is es-
sential for promoting more equitable communi-
cation and participation in Cambodian society,
with particular potential to enhance accessibility
in education and other critical domains.

2 Literature review

2.1 Object detection

Sign language recognition has seen significant
advancements in recent years with the integra-
tion of deep learning and real-time object de-
tection techniques. Buttar et al. (2023) devel-
oped a hybrid approach for American Sign Lan-
guage (ASL) recognition that effectively com-



bines YOLOV6 [11]—a state-of-the-art real-time
object detection model—for static hand ges-
ture detection, with Long Short-Term Memory
(LSTM) [12] networks and MediaPipe [13] to
recognize dynamic gestures [14]. This compre-
hensive solution bridges the gap between static
and dynamic sign recognition, enhancing the
overall system’s flexibility and performance. In
the domain of few-shot object detection, sev-
eral innovative approaches have emerged to ad-
dress the challenge of limited labeled data. The
Meta-DETR framework proposed by Zhang et
al. (2022) eliminates the need for traditional
region proposal methods by leveraging image-
level few-shot learning [15]. It is capable of
detecting a wide variety of object categories
such as animals, vehicles, household items, and
tools, even with minimal training examples. This
model emphasizes recognizing novel or unseen
classes by learning semantic relationships be-
tween base and new categories. Similarly, Zhang
et al. (2021) introduced a method for accu-
rate few-shot object detection by incorporating
support-query mutual guidance and hybrid loss
functions. Their approach enhances detection
performance for rare object classes by effectively
exploiting the relationship between support and
query images [16].

2.2 Sign Language Recognition

Focusing on sign language recognition in differ-
ent linguistic contexts, Shenoy et al. (2021) de-
veloped a real-time Indian Sign Language (ISL)
recognition system that uses a smartphone cam-
era to identify 33 static hand poses and 12 dy-
namic gestures [17]. By applying grid-based
feature extraction and a k-Nearest Neighbors (k-
NN) classifier, their system achieved high accu-
racies of 99.7% for static poses and 97.23% for
dynamic gestures, significantly aiding commu-
nication for individuals with hearing and speech
impairments. In a comparative study, Kondo
et al. (2024) analyzed the performance of Vi-
sion Transformers (ViT) [18] versus Convolu-
tional Neural Networks (CNN) [19] for Japanese
Sign Language recognition [20]. Their find-
ings revealed that ViT models, particularly those
using angular features, outperform traditional
CNNs, offering valuable insights into the po-
tential of transformer-based architectures in sign
language applications. Daniels et al. (2021) pro-
posed a recognition system for Indonesian Sign
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Language (BISINDO) that utilizes the YOLOv3
object detection algorithm [21]. The system
demonstrated excellent performance, achieving
100% accuracy on static image data and 72.97%
accuracy on dynamic video data, underscoring
the promise of real-time object detection mod-
els for sign language recognition. Addition-
ally, Dong et al. (2022) introduced Incremental-
DETR, an extension of the DETR [22] ar-
chitecture that integrates fine-tuning with self-
supervised learning [23]. This method allows the
model to learn new object classes with minimal
labeled data while maintaining performance on
previously learned base classes. It addresses the
issue of catastrophic forgetting and overfitting,
making it a robust solution for few-shot learning
scenarios. Recent studies have shown that Medi-
aPipe Holistic provides a reliable framework for
extracting multimodal landmarks of the hands,
face, and body, which significantly improves the
performance of continuous sign language recog-
nition models [24].

These studies collectively illustrate the rapid
evolution of sign language and object detection
technologies. They highlight the importance of
integrating real-time detection, few-shot learn-
ing, and advanced deep learning models to build
robust, accurate, and adaptable recognition sys-
tems.

3 Methodology

Our methodology is designed to rigorously test
our model performance in not only the ideal
scenarios but also real-world scenarios as well.
In order to achieve this, we created two dis-
tinct datasets, a dual-stream data preprocessing
pipeline, and a collection of model architectures
for comparative analysis.

3.1 Dataset and Evaluation Strategy

Dataset classes

Since the Khmer alphabet consists of 33 let-
ters, we created 33 separate classes, each class
representing a different alphabet. The majority
of hand shapes in the Khmer Sign Alphabet
are characterized more by the position of the
fingers than by their specific orientation. For
instance, even when the hand is slightly rotated,
the particular finger arrangement for “kor”
keeps the hand shape visually different from
other letters. For references to take images of
each alphabet sign we used an app call ‘Khmer
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Figure 3. Simple Classes of Khmer Alphabet Sign Language from Krousar Thmey [25]

Sign Language’ that is developed through col-
laboration between Research Triangle Institute
(RTI) and Ministry of Education, Youth and
Sport (MoEYS) under leadership and technical
support from Department of Information and
Technology (DIT), Special Education Depart-
ment (SED), and National Institute for Special
Education (NISE) [26]. In addition, the Khmer
Sign Language chart developed by Krousar
Thmey was used as a reference for standardizing
the representations of 33 consonants (figure
3) [25]. These resources together served as the
foundation for building a structured dataset,
which can be applied to machine learning
models for sign-to-text translation.

3.1.1 Primary Training Dataset

As no large-scale public dataset is available
for Khmer Consonant Hand Signs, a primary
dataset was manually collected and curated for
this study. To facillitate the rapid collection of a
large volume of data, we captured frames from
a video stream and convert them into individ-
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ual images. This method allowed us to assemble
a comprehensive dataset of over 17,000 images
distributed across 33 classes each representing
a unique Khmer consonant. The data was col-
lected under controlled and uniform condition,
characterized by consistent lighting, a single per-
son, and recorded at the same background. Stan-
dard visual references were use to ensure the
accuracy of the performed signs. This dataset
served as the foundation for training and validat-
ing our models in a controlled environment.

3.1.2 The ”Challenge Set”’: A Real-World
Robustness Benchmark

To evaluate model robustness beyond the con-
trolled environment of the primary dataset, we
also curated a ”Challenge Set”. This smaller but
more difficult dataset was specifically collected
and designed to simulate common real-world
data degradation and represent a domain shift
from the training data. The data consists of: (1)
Images from people not present in the training
set, introducing more variations in hand shape,
size, and skin tone. (2) Image were captured in
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Figure 4. Example of some classes

an environment with different lighting and back-
ground (3) Signs performed against busy, real-
world backgrounds

By evaluating models on this challenge set as
the central focus of our robustness analysis, it
will reveal the true generalization capability of
each architecture.

3.2 Multi-Modal Data Preprocessing

We implemented a two-stream preprocessing
pipeline utilizing Google’s MediaPipe Hand-
Landmarker to extract the visual and skeletal fea-
tures from each raw image.

Image Augmentation

3.2.1 Vision Stream Pipeline

The objective of the vision pipeline is to gen-
erate a focused, normalized image of the hand
for the Convolutional Neural Network. (1) Me-
diaPipe’s HandLandmarker is used to detect the
21 keypoints of the hand in the full resolution
image. (2) Bounding box is then calculated from
the detected landmark and expanded with a 20-
pixel padding to ensure the entire hand is capu-
tred while minimizing the background noise. (3)
The original image is then cropped based on the
bounding box and resized to a uniform 224x224
pixels. (4) The resized image is processed us-
ing the specific preprocess_input function corre-
sponding to its CNN backbone(EfficientNetB0)

Figure 5. Example of Augmented Image

to scale the pixel values to the expected range.
(5) During training, Image augmentation will be
applied to the dataset to increase the variation in
the Dataset. The image augmentation techniques
used for this current model are Horizontal Flip-
ping, Random Contrast, and Random Brightness
as shown in figure 5.

3.2.2 Skeleton Stream Pipeline

The skeleton pipeline extracts a quantitativem
geometric representation of the hand’s pose. (1)
The normalized 3D world coordinate (X, y, z) of
the 21 keypoints are extracted from MediaPipe
output. (2) The landmarks are structured into
a tensor with the shape of (21, 3) in order to
make it suitable for models designed to process
sequential data.

3.3 Model Architectures

To systematically evaluate the different learn-
ing strategies for Khmer Consonant Hand Sign
Recognition, We compared a collection of uni-
modal and multi-modal architectures. All multi-
modal models share a common two-stream struc-
ture consisting of a Vision Branch to process im-
age data and a Skeleton Branch to process land-
mark data, which are then combined by a fusion
mechanism.

3.3.1 Baseline Multi-Modal Architecture
(CNN + MLP)

Our baseline fusion architecture, illustrated in
Figure 6, serves as the foundation for our com-
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Figure 6. The baseline two-stream multi-modal fusion architecture.

parative analysis.

¢ Vision Branch: The visual stream take a

preprocessed 224 x 224 pixel image as in-
put. The image is fed into a pretrained CNN
Backbone(EfficientNetB0), with its layers
frozen to act as a powerful feature extrac-
tor. The resulting feature map is flattened
into a vector and passed through a Dense
layer with 256 units to produce the final Vi-
sion_Features

Skeleton Branch: The skeletal stream
takes a (21, 3) tensor of landmark coor-
dinates as input. This tensor is flattened
into a 63-dimensional vector and processed
by a Multi-Layer Perceptron, consisting of
a Dense layer with 128 units followed by
Dense layer with 64 units. This produces
the final Skeleton_Features

Fusion and Classification Head: The
Vision_Features and Skeleton_Features are
then combined via a Concatenate layer.
This unified feature vector is passed
through a final classification head, consist-
ing of a Dense layer with 256 units (ReLU)
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and a Dropout layer, before the final soft-
max output layer predicts one of the 33
classes.

3.4 Architectural Variations for

Comparative Analysis

To investigate the effectiveness and robustness
of the system, we evaluated several key archi-
tectural variations.

Unimodal Baselines:

* Vision-Only Model: Consists solely of the

EfficientNetBO Vision Branch and the final
classification head.

* Skeleton-Only Model: Consists solely of

a skeleton processing branch (LSTM or
MLP) and the final classification head. This
is crucial for establishing the standalone ro-
bustness of the geometric data.

Fusion Model Variations:

 EfficientNetB0 + LSTM: Replaces the

MLP in the skeleton branch with a Long
Short-Term Memory (LSTM) layer to test



if processing landmarks as a sequence im-
proves performance.

¢ Attention-Based Model (EfficientNetB0
+ 1D-CNN + Attention): Our most sophis-
ticated architecture. It replaces the MLP
with a 1D-CNN to detect local geometric
motifs in the landmarks. Crucially, it re-
places simple concatenation with a gating-
based Attention mechanism, designed to al-
low the model to learn the relative impor-
tance of the vision and skeleton streams
during fusion.

This suite of models allows for a direct compar-
ison of unimodal vs. multi-modal performance,
as well as an analysis of the efficacy of different
skeleton processing techniques and fusion strate-
gies.

3.5 Experiments

Our experimental setup was designed to rigor-
ously test our core hypotheses regarding model
robustness under realistic conditions. All mod-
els were trained and evaluated using the Tensor-
Flow/Keras framework.

e Training Protocol: All models were
trained on the “clean” training set for
a maximum of 50 epochs, using a
BATCH_SIZE of 32 and the Adam op-
timizer. A memory-safe Data Generator
was implemented to process images on-
the-fly, preventing RAM exhaustion. An
EarlyStopping callback with a patience of
7 epochs, monitoring val_loss, was used to
ensure each model was trained to its opti-
mal point before overfitting.

e Evaluation Protocol: Each optimally
trained model was evaluated on two dis-
tinct datasets: The held-out Clean Test Set,
to measure performance under ideal con-
ditions. The manually curated Challenge
Set, to measure true real-world robustness
against data degradation.

4 Result

The experiments yielded a clear, consistent, and
highly informative set of results. While all mod-
els performed exceptionally well on the clean,
academic dataset, their performance diverged
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dramatically on the difficult real-world Chal-
lenge Set. The quantitative findings are summa-
rized in table 1.

As shown in table 1, all evaluated models
achieved near-perfect accuracy (92-100%) on
the clean test set. However, on the Challenge
Set, a stark performance hierarchy emerged. The
Skeleton Model (LSTM) established itself as
the most robust architecture, achieving the high-
est accuracy of 81.00%. In contrast, all multi-
modal fusion models underperformed this uni-
modal baseline. The EfficientNetBO + MLP
model achieved 60.00%, while the Efficient-
NetBO + LSTM and Attention-Based Model ex-
perienced a catastrophic performance collapse,
dropping to 22.00% and 11.00% respectively.

5 Discussion and Findings

Our comprehensive evaluation led to a deci-
sive and counter-intuitive primary finding: for
the task of robustly recognizing Khmer Conso-
nant Hand Signs under real-world conditions,
the unimodal Skeleton-Only model is defini-
tively the superior architecture. The failure of
all multi-modal fusion attempts, particularly the
catastrophic collapse of the advanced Attention-
Based Model, provides powerful evidence for
the ”Confident Garbage” phenomenon. We di-
agnose this as follows:

* Vision Model: The EfficientNetBO vision
model, while powerful, demonstrates ex-
treme brittleness when faced with the do-
main shift of the Challenge Set. Its stan-
dalone accuracy of 56% shows it struggles
significantly with visual degradation.

e Skeleton Model: The Skeleton-Only
model, processing pure geometric data, is
largely immune to visual noise. It main-
tains a high accuracy of 81%, establishing
itself as a highly robust and reliable signal
source.

* The Failure of Fusion: When these two sig-
nals are fused, the vision branch produces
high-confidence but erroneous feature vec-
tors on degraded images. This “confident
garbage” poisons the fusion process. The
final classifier, attempting to reconcile a
strong, correct signal with a loud, incorrect
one, makes a poor compromise. This is why



Table 1. Comprehensive Comparison of Model Performance Across Key Metrics

Model Category Model Configuration Inference Time Test Set (%) Challenge Set (%)
Baseline Models Vision Model (EfficientNetBO0) 6.3 ms 100 56.00
Skeleton Model (LSTM) 3.0 ms 100 81.00
Fusion Models EfficientNetBO + MLP 7.0 ms 100 60.00
EfficientNetBO + LSTM 8.8 ms 92.00 22.00
Attention-Based EfficientNetBO + 1D CNN + Attention 11.0 ms 100 11.00

Model

the EfficientNetBO + MLP fusion (60%) is
worse than the skeleton model alone (81%).

* The Attention Mechanism: The Atten-
tion model’s collapse to 11% is the most
critical piece of evidence. This indicates
that during training on the clean dataset,
the model learned a fatal policy: to heav-
ily trust the vision branch. When faced
with the Challenge Set, it continued to ap-
ply this policy, actively ignoring the correct
skeleton data and amplifying the “confident
garbage” from the vision branch, leading to
a near-total failure.

6 Future Work

Our findings clearly indicate that the primary
bottleneck for building a state-of-the-art fusion
model is not the fusion architecture itself, but the
brittleness of the vision branch. Therefore, fu-
ture work should prioritize improving the vision
model’s robustness.

e Data-Centric Approach: The most
promising path is to curate a larger and
more diverse visual training dataset.
Actively collecting and augmenting the
training set with examples of poor lighting,
motion blur, multiple signers, and complex
backgrounds is essential to teach the vision
model to generalize.

* Self-Supervised Pre-training: Before
fine-tuning on sign language data, the vi-
sion backbone could be pre-trained on a
large, unlabeled dataset of diverse hand im-
ages. This would help it learn more general
and robust features specific to hands, rather
than relying solely on ImageNet.

* Uncertainty-Gated Fusion: Future re-
search could explore fusion mechanisms
that explicitly model the uncertainty of each
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branch’s prediction, allowing the model to
learn to completely discard the vision input
when its confidence is low.

7 Conclusion

This research set out to identify the most ro-
bust architecture for Khmer Consonant Hand
Sign Recognition. Through a systematic com-
parison of six distinct unimodal and multi-modal
models on both a clean dataset and a real-world
”Challenge Set,” we arrived at an unambiguous
conclusion. A simple, unimodal Skeleton-Only
(LSTM) model, which processes geometric hand
landmarks, decisively outperformed all complex
multi-modal fusion architectures in robust, real-
world conditions. Our analysis revealed a criti-
cal ”Confident Garbage” phenomenon, where a
powerful but brittle pretrained vision model ac-
tively degrades the performance of the more ro-
bust skeleton stream during fusion. This work
serves as a vital case study, demonstrating that
for applications with a significant domain shift,
a simpler, more robust unimodal model can be
the superior choice for deployment, challeng-
ing the prevailing assumption that multi-modal
systems are inherently better. However, despite
these impressive results, several limitations still
remains. Confusion still persists among groups
of similar signs, and the present research focus
only on static alphabet gesture rather than con-
tinuous gesture. Additionally, the current re-
search does not contains vowel signs or com-
mon phrases signs which is widely used by deaf
people. Lastly, Real-world robustness which in-
cludes varying lighting, different backgrounds,
skin tones, varying hand shapes, still have not
been thoroughly tested and evaluated yet.

Based on our research and evaluation, future
work will focus on expanding Khmer Sign Lan-
guage Recognition (KSLR) for educational pur-
poses. This paper had proposed the initial stage
that concentrate on consonant recognition. After



this, we will extended to include vowels, num-
bers, and additional sign. This step-by-step ex-
pansion will provide a structured learning tool
for children with hearing impairments. Along-
side this, more experimentation with attention-
based architectures will be conducted to enhance
class separation, and robustness will be evalu-
ated using real-world datasets under diverse con-
ditions.
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Abstract

Digital Technology and agriculture are cru-
cial in helping farmers and students under-
stand insect interactions in rice fields and
how to apply treatments effectively. An
agent-based framework is appropriate for
studying the ordinary population of insects
interacting on a rice crop, but it is still diffi-
cult to adapt for non-computer scientists in
more specific application contexts (e.g., vari-
ous treatment scenarios, insect reproduction,
insect resistance, and crop yields), which re-
quire integrating particular behaviours for
agents. In this paper, we present a built-
in model integrated into the GAMA open-
source modelling and simulation platform,
allowing modellers to easily define the in-
teraction of insects with a detailed presen-
tation of rice field, insect population and
treatment decision. In particular, it enables
modelling the application of insecticide on
paddy fields while understanding its effects.
This agent-based model serves as a founda-
tion for creating a comprehensive virtual re-
ality (VR) game that presents scenarios in-
volving pesticide application decisions, inter-
actions between insects, and their impact on
crop yields.

Keywords: Agent-based Modelling, GAMA
Platform, Rice Paddies, Insect Interac-
tion, Pesticide Application, Simulation, VR
Game.

1 Introduction

The foundation of Cambodia’s economy and
culture is rice. Producing about 11.6 mil-
lion tons of paddy by 2022, it is the primary
staple food that sustains the livelihoods of
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about 3 million farmers and takes up about
75% of the country’s agricultural land. [1].
In addition to being essential for food secu-
rity and exports, rice in Cambodia is also ex-
tremely susceptible to outbreaks of pests and
diseases, which jeopardise yields and farmer
profits. While blast and bacterial leaf blight
are among the main diseases, common pests
include brown planthoppers, rice bugs, leaf
folders, and stem borers. Chemical pesti-
cides are frequently used by farmers for con-
trol, but excessive use has resulted in ecolog-
ical imbalance, resistance, and health issues.
In order to guarantee sustainable rice pro-
duction, integrated pest management (IPM)
techniques—such as crop rotation, ecological
engineering, biological control, and the use of
resistant varieties—are being promoted more
and more. Therefore, improving productiv-
ity and increasing climate change resilience
in Cambodia’s rice industry requires more
sustainable pest management.[2].

Pesticides are utilised globally to improve
crop yields by minimising losses due to all
kinds of insect pests (weeds, diseases, in-
sects, etc). However, incorrect application
of these chemicals can lead to pesticide resis-
tance and a resurgence of pest populations,
non-target organisms that are often benefi-
cial [3]. Therefore, improving the knowledge
of farmers on pesticides and their risks re-
mains a condition for better pest manage-
ment. A simulation on insect interaction in
rice crop and application of pesticide is im-
plemented to provide knowledge about the
behaviour of insects and the negative and
positive impact of pesticides. Insecticides
have a negative impact on human health and
the environment, which is a concern for the



government and consumers. If farmers un-
derstand the role of beneficial insects, such as
parasitoids and predators, they are likely to
reduce pesticide applications. By leveraging
these natural enemies to control pest pop-
ulations, they can enhance rice yields while
minimising chemical use.

This research studies a sample of rice field
area, where a grid represents one part of the
rice crop. The number of grids can change
based on the size of the plot. This ap-
plication is used to build calibrated scien-
tific agent-based models validated in well-
documented case studies, ensuring the real-
ism for the development scenarios that par-
ticipants explore and allowing them to col-
laborate virtually to explore solutions to sus-
tainability issues. It is a bridge to develop
the virtual universes for short modules for
workshops with young students or as inte-
gral components of the curriculum for high
school students.

The aim of this research is to provide
a comprehensive understanding of pesticide
application in rice fields, exploring both
the methods used and the potential conse-
quences. It examines the pesticides com-
monly employed in rice cultivation, their ef-
fectiveness in managing pests, and the prac-
tices farmers adopt to maximise their bene-
fits. Additionally, it will address the environ-
mental effects on non-target organisms, soil
health, and water quality. It will also discuss
the socio-economic implications for farmers
and communities, highlighting the balance
between pest control and sustainable agri-
cultural practices. Through this exploration,
this research seeks to inform farmers about
responsible pesticide use and promote strate-
gies that minimise negative outcomes while
maintaining crop productivity. All of these
are built into an agent-based model for sim-
ulation by using the GAMA platform, which
is an open-source modelling and simulation
platform that allows modellers to easily de-
fine the interaction of insects with a detailed
presentation of the rice field, insect popula-
tion and treatment decision.

Initially, formulas and research were devel-
oped by the researcher working on the sub-
ject and used as a board game using Mi-
crosoft Excel, and subsequently, they were
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transformed into an agent-based model util-
ising the Gama platform. This agent-based
framework is appropriate for studying the or-
dinary population of insects interacting on
rice crop, but still difficult to adapt for non-
computer scientists, to a more specific ap-
plication context, for example, various treat-
ment scenarios, insect reproduction, insect
resistance, and crop yields require integrat-
ing particular behaviours for agents.

2 Related Work

A dynamic model along with its discretised
system to increase the agricultural crop pro-
duction using some external efforts in the
presence of insects and insecticides. This re-
search model in this paper is based on local
governments, farmers, and consumers, and
a more detailed evolutionary game analysis
model is constructed to provide a reference
for subsequent policy optimisation. Mathlab
is utilised to simulate the behaviour of stake-
holders’ participation in pesticide reduction
and analyse the impact of changes in the
behaviour of different subjects on the pesti-
cide reduction evolutionary game system [4].
This paper reviews recent literature on how
pesticides harmfully affect beneficial organ-
isms, such as parasitoid wasps, with the goal
of enhancing pest control strategies that inte-
grate both chemical and biological methods
for sustainable integrated pest management
(IPM) [5].

This study develops a novel geospatial
agent-based EAB-BioCon model for the in-
teractions of the emerald ash borer (EAB)
with the parasitoid Tetrastichus planipennisi
(TP) wasp in order to evaluate the spread
of forest infestations. The model is imple-
mented on geospatial data from the City of
Oakville, Canada and is composed of EAB
Baseline model, representing EAB geospa-
tial dynamics and the EAB-TP model that
employs scenarios to measure EAB response
to variations in TP-based biological control
strategies [6]. Similarly, sugarcane produc-
tion areas in Brazil have experienced a slower
evolution in productivity, and one of the rea-
sons for this is related to the increase in
phytosanitary problems, such as the pres-
ence of the pests. Therefore, an agent-based
model has been developed to simulate the



pest population and its dispersal in a one-
hectare sugarcane crop field in Pederneiras,
Sao Paulo, Brazil, delimited with the aid
of satellite imagery, considering two scenar-
ios: the first without biological control and
the second with biological control using the
parasites Trichogramma galloi and Cotesia
flavipes. This model was developed using the
NetLogo 6.3.0 software [7].

3 Implementation of the model

The model has been implemented on the
GAMA ! platform (version 2025-06), dedi-
cated to agent-based modelling (ABM) and
simulation. ABM consists of actors, re-
sources, dynamics and interactions (ARDI).
The resource consists of rice paddies and rice
crops. A rice field is defined as a 10 x 10
grid in our model, representing the whole
configuration. Each cell contains three lay-
ers of rice, representing rice crops, which can
be damaged or destroyed by pest popula-
tions. These pests can devastate the rice
crops, leading to a loss in crop yield. The
model includes two main actors: farmers and
insects. The farmer is responsible for apply-
ing treatments, while insects are divided into
three main groups: parasitoids, predators,
and pests. Parasitoids and predators were
introduced to control a rice insect pest. A
few introductions of parasitoids from differ-
ent species of pests related to the target in-
sect have been successful; examples are not
common, and none are known in rice [8]. Dy-
namic models are used to describe objects
and their relationships as they change over
time. In our model, there are three dynam-
ics included: first, the consumption of pests
by parasitoids and predators; second, the
movement of insects, such as hunting and
fleeing; and third, the farmer’s decision on
whether to spray or not. There are four in-
teractions in this agent-based model. First,
in pest-plant interactions, the model simu-
lates how insects interact with rice plants,
including the impact on plant health. Sec-
ond, insect-insect interactions are actions in
which a group of insects, such as parasitoids
and predators, eat pests. Third, farmer-
insect/plant interactions, farmers’ actions,

Thttps://gama-platform.org/
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like applying pesticides or adjusting irriga-
tion, can be incorporated as interactions af-
fecting both insects and plants.

3.1 Representation of simulation
data

Each rice grid consists of three layers, repre-
sented by three different colours, and it also
has another colour that represents all the lay-
ers being lost, which is listed in Table 1. In-
sects have three groups; the correspondence
is shown in Table 2:

Table 1. List of colours used to represent rice
health

Layer Colour Meaning

w

rgb(0, 112, 48) Healthy rice

rgb(198, 239, 206) Slightly damage

Heavy damage

2
1 rgh(255, 255, 0)
0

rgh(88, 57, 39) Loss all layers

Table 2. List of colours used to represent
each group of insects

Type of insect Colour Meaning
Pest red Harmful insects
Parasitoid black  Beneficial insects
predator violet  Beneficial insects

3.2 Data collection

To validate the model and thus the ability
of GAMA to simulate insects in rice pad-
dies, we recorded 13 weeks of rice cycles to
validate the result. This is important when
parameters have been changed so that most
of the values in each week will be modified.
This data is crucial for analysing the impact
of pesticides on insects, both non-target in-
sects and target insects such as pests. Partic-
ipants are aware of the importance of reduc-
ing pesticides in each cycle of rice and the
final yield. Furthermore, data from batch
simulation was also recorded to analyse the
exploration of four parameters which affect
the crop yield.

3.3 Description of the model and
parameters used

In this simulation, the parameters have been
divided into three different groups such as



pesticide, insect, and rice paddy. The pesti-
cide category is used to define user interac-
tion. If it is true, they will interact with this
simulation, deciding whether to spray or not;
otherwise, it has several scenarios that par-
ticipants can select the one they prefer, and
it will simulate automatically. First, 'None’
is an option that no treatment was applied.
Second, ’All weeks’ is an option that sprays
every week except the first and last weeks;
the first week marks the start of the rice crop,
and spraying in the last week is prohibited to
protect the health of the harvesters and con-
sumers. Third, the ’Only 2nd Week’ option
involves spraying exclusively during the sec-
ond week, while skipping the first and last
weeks, continuing this pattern through week
11.

The insect category is used to define the
number of parasitoids and predators. The
initial value of the parasitoid will start with
25 as the default, and the initial value of the
predator will be 7 as the default. This change
will update the population of insects in the
rice paddies for the initial simulation.

The first model was built based on a game
formula, which we calculated using Microsoft
Excel. This initial model serves as a founda-
tion for developing a second, more complex
agent-based model. A key aspect of this first
implementation is ensuring that the results
of the game align with those calculated in
Excel. This approach paves the way for the
next model, as the complexity of the com-
putations requires a step-by-step process to
simplify the calculations.

To calculate each week of this simulation,
we first compute the independent variable,
followed by the dependent variable that de-
pends on it. Initially, we calculate the dy-
namic yield, which is first calculated and can
be applied in the last computation. Next,
according to the Figure 1, the calculation of
predators is computed, and then we calculate
parasitoids. These calculations increase the
population according to the population the
week before and the reproduction rate, which
depends on whether they eat enough or not.
Subsequently, pest and its related variables
are calculated. After updating the insect
population, the predation rate should also be
calculated. The predation rate is the amount
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of total pests eaten by both predators and
parasitoids divided by the total number of
pests. It refers to the frequency with which
an organism captures and consumes its prey
in an ecosystem. Finally, the result is com-
puted to get the remaining field case, poten-
tial yield, real yield, and max dynamic yield.

On the other hand, more dynamics have
been implemented. It is updated following
the first model, which only sticks to the game
that is built in MS Excel. The most impor-
tant parts are the insect’s hunting, fleeing
and eating, as well as the farmer’s decision
in many scenarios. Similarly, several param-
eters have been added for user interaction in
the simulation, which you can see in the Ta-
ble 3. Two types of insect groups, parasitoids
and predators, have been implemented using
algorithm 1.

Furthermore, four scenarios of this simu-
lation are described in the algorithm 3. It
features five functions sequentialVariable-
Calculation, interactFromParticipant,
sprayAllTheTime, sprayOnceWithin-
RiceCycle(week__num), and doNot-
Spray. The sequentialVariableCalcu-
lation() function calculates the each week
of insect population, and the result of rice
yield is mentioned in the Figure 1.

The interactFromParticipant() func-
tion allows the participant to interact
with the simulation by deciding whether
to spray or not. This still keeps the
first and the last week of the rice cy-
cle, which is our target mentioned above.
The sprayAllTheTime() function works
only is_interacted is false, and it will
spray every week except for important
weeks. The sprayOnceWithinRiceCy-
cle(week__num) function runs automati-
cally without interaction from the partici-
pant by spraying once within the rice cycle,
starting from week 1 to 11. The doNot-
Spray() function indicates that no spray is
applied throughout the entire rice cycle, rely-
ing on natural enemies such as predators and
parasitoids to control the pest population.

4 Experimental results

The experiment was divided into two main
categories derived from an 11 factorial com-
binations scenario. First, user interaction in



calc_dynamic_yield [ i )
Calculate update_pest_non_resistant calc_field_case
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predator
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Figure 1. Step to calculate each week of rice paddies

Algorithm 1 Hunting
function HUNTING
if goal = nil then
IstPest < Pest where(!dead(each) and each.shape distance_to self.shape <
perception_radius )
if length(lstPest) > 0 then
agent a < first(lstPest short (each.shape distance to self.shape))
if a = nil then
a < any(Pest where(!dead(each)))
else
speed «— 2.5#km/#day
goal < a.location
end if
end if
else if self.location distance_to goal < 0.5 then
pestToDie < Pests where (!dead(each) and each.location distance_to goal < 0.5)
remainToFEat < length(Pest where(!dead(each) — pests__total)
if remainToEat > 0 then
pestToDie <— remainToEat among PestToDie
ask pestToDie do die
end if
goal < nil
speed < 1.6#km/#day
end if
end function
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Algorithm 2 Fleeing
function FLEEING
if length(Predators) where(each distance_to self < perception_radius) > 0 or
length(Parasitoids) where(each distance_to self < perception_radius) > 0 then
speed <« 2.0#km/#day
1s__chased < true
color < #lime
if goal = nil then
agent a < any(Pests ldead(each) and !Insect(each).is_chased)
if a # nil & !dead(a) then
if flip(0.5) then

goal < a.location

else
goal < any_location__in(cell.shape)
end if
else
goal < any__location__in(cell.shape)
end if
end if
end if
if goal # nil & self.location distance_to goal < 0.5 then
goal < nil
end if
if length(Predators) where (each distance to self < perception radius) = 0 and

length(Parasitoids) where (each distance_to self < perception_radius) =0 then
is__chased < false
color + #red
speed < 1.6#km/#day
end if
end function

Algorithm 3 Farmer decision function
function FARMER_ DECISION
do sequentialVariableCalculation()
if is_interacted then
do interactFromParticipant()
else if ALL WEEK then
do sprayAllTheTime()
else if ONCE PER CYCLE then
do sprayOnceWithinRiceCycle(week__num)
else if NONE then
do doNotSpray()
end if
end function
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Table 3. List of parameters used in experiment

Parameter Category  Value (default) Note

rice_field_ width Rice Paddy 10 width of rice paddy

rice_ field_ height Rice Paddy 10 height of rice paddy

number_of parasitoid Insect 25 This will affect and update
both the number of parasitoid
and potential parasitoid

number_of predator Insect 7 This will affect and update
both the number of predator
and potential predator

interactive Pesticide True

spray__decision Pesticide None Enable only interactive is false

Table 4. Apply pesticide once during the rice cycle (tons/ha)

Week 1 2 3 4 5

6 7 8 9 10 11

Result

0.0 4.02 399 393 3.83 3.73 3.65 3.65 3.65 3.65 3.65

the simulation. This depends on the partic-
ipant’s decision that they can input like the
Figure 2. Second, without interaction from
participants, we chose the important scenar-
ios such as no treatment, all-week treatment,
and only the second week. Moreover, the re-
sult will be shown in a graph and the rice grid
user interface (UI). For various scenario ex-
periments, a batch experiment has been im-
plemented with four experiments into one Ul
for comparing the results, for example, spray
only the 2nd week, only the 1st week, only
the 3rd week and no spray.

4.1 Interaction from player

The interaction from the player, the result
relies on the behaviour of the player who de-
cides to spray or not for each week of rice
cycles. Therefore, various scenarios will be
presented in this section. For example, the
participant decides to spray in the sixth week
of the rice cycle, and the result is illustrated
as a graph in Figure 3. It is seen that in
the second week the pest population stood at
200 and dramatically decreased to just under
60. In the sixth week, pesticides have been
applied while the population hit to bottom,
indicating that natural enemies can control
pest populations. Inversely, this treatment
will affect the next week of the rice cycle, as
natural enemy such as parasitoids and preda-
tor drop their population. It has been con-
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cluded that the treatment in the sixth week
does not affect rice yield. As a result, rice
yield is only just above 3.5 tons with a max-
imum of 5 tons per hectare.

This is not a good spray based on what
was mentioned, so if we spray in the previ-
ous week, which is the fifth week what will
happen?. According to Figure 4, it is seen
that crop yield is just under 4, with the ex-
act amount 3.83, which was recorded. This
amount is slightly different from the amount
chosen to spray on the sixth week. The rea-
son is that even though we do not spray, it
will not affect to the pest population and
crop yield because natural enemies can con-
trol the pest population by eating them. Re-
ducing pesticide use this week is crucial, as
it has no impact on crop yield, lowers pes-
ticide costs, and helps prevent health issues.
Taking into account this scenario, the appli-
cation of the pesticide in the fourth week was
experimented.

Regarding the pest population, it consis-
tently remained at 200 in the second week
and rose to approximately 220 in week 4.
Subsequently, after insecticide was applied,
the pest population plummeted to 80 in week
5 and continued to decline through the end of
the week. As a result, the crop yield reached
3.93 tons/ha. What happens if a pesticide is
applied in the third week?

This scenario is similar to the above; after
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Figure 7. No treatment

spraying at week 3, the pest population de-
clines to the bottom from week 4 until the
crop yield. As a result, rice yield obtained
3.99 tons/ha. In conclusion, early-season
spraying (Week 3) significantly reduces pest
population growth compared to mid- or late-
season spraying. Delayed spraying interven-
tions (Week 6 and beyond) result in greater
yield losses due to established pest popula-
tions. For more results, refer to the section
on spraying once per rice cycle.

4.2 No treatment scenario

No treatment for all weeks is a good sce-
nario, because natural enemies can control
the pest population. According to Figure 7,
it is observed that as the number of natural
enemies slightly increases, the pest popula-
tion rises to just under 220 in week 4 before
decreasing significantly. This indicates that
traditional farming practices that utilise ben-
eficial insects for pest control are effective.
Consequently, the rice yield is 3.65 tonnes
per hectare.
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Figure 8. Spray every week

4.3 Spray every week

Apply treatment every week; Figure 8; will
be harmful to all insects, including good and
bad insects. The pests develop resistance to
pesticides and reproduce rapidly, damaging
the crop, which results in a yield of only 3
tons per hectare. Not only is it unhelpful,
but it is also harmful to human health.

4.4 Spray once per rice cycle

Applying pesticide once during the rice cycle
is a notice scenario that we considered. As
shown in Table 4, applying the spray in the
second week yields the best result of 4.02 tons
per hectare, as this coincides with the week
pests enter the rice paddy. For more details
about this scenario, refer to Interaction from
Participants.

5 Conclusion

This model is designed to provide various
scenarios for a VR game aimed at educat-
ing high school students and farmers. Ini-
tially, a game was defined in Microsoft Ex-
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cel to lay the groundwork for developing an
agent-based model. Subsequently, an agent-
based model was constructed to expand on
this idea and experiment with different sce-
narios. After different scenarios were imple-
mented, we found that a farmer has their
own rice field, so 4 different rice fields with
different spray actions were implemented to
compare the results. This will provide four
different players to interact in game play for
the next implementation in VR. The objec-
tive is to help farmers understand the under-
lying mechanisms and key messages, such as
the fact that a high level of pesticides is not
the optimal scenario. In the near future, the
shapefile will include or be loaded into our
agent-based model to simulate a real envi-
ronment and get more accurate results.
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Abstract

Student performance prediction is increasingly
important in higher education as Learning Man-
agement Systems (LMSs) capture detailed aca-
demic and behavioral data. This paper pro-
vided a systematic comparative review of ma-
chine learning models for final grade prediction
that mainly used benchmark datasets such as
the Open University Learning Analytics Dataset
(OULAD). Classical models like Logistic Re-
gression, Decision Trees, and Support Vector
Machines achieve 75-82% accuracy, ensemble
methods such as Random Forest and XGBoost
reach 85-91%, and deep learning approaches
like Long Short-Term Memory (LSTM) and
Convolutional Neural Network (CNN) up to
93%. Behavioral features submission timeli-
ness, login frequency, and resource engagement
consistently as key predictors. However, most
studies focus on Western contexts and overlook
model interpretability and practical applicabil-
ity in developing regions rather than optimizing
for accuracy. The main goal is to identify at-
risk students to enable early interventions. This
review synthesizes technical and contextual in-
sights to inform effective deployment in South-
east Asian settings with emphasis on the Cambo-
dia Academy of Digital Technology (CADT).

Keywords: Student Performance Prediction,
Machine Learning, Educational Data Mining,
Learning Analytics, Final Grade, Comparative
Study, Ensemble Models, Deep Learning, Long-
Short Term Memory, Convolutional Neural Net-
work

1 Introduction

Learning Management Systems have trans-
formed higher education by automatically cap-
turing detailed behavioral data, including log-in
patterns, assignment submissions, quiz attempts,
and resource engagement [1]. This digital foot-
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print enables early identification of at-risk stu-
dents, facilitating timely interventions that im-
prove learning outcomes [2]. Educational Data
Mining (EDM) and Learning Analytics (LA)
leverage machine learning to extract actionable
insights from these data, supporting evidence-
based decision making in educational institu-
tions [3].

The development of predictive modeling in
education mirrors the larger progress in machine
learning. Initial methods employed traditional
algorithms such as Logistic Regression and De-
cision Trees, reaching 75-82% accuracy while
maintaining high interpretability [4]. Ensem-
ble techniques like Random Forest and XGBoost
enhanced performance to 85-91% via aggrega-
tion strategies that minimize variance and cap-
ture intricate feature interactions [5], [6]. Re-
cent deep learning techniques, especially LSTM
networks and attention mechanisms, extend ca-
pabilities to 92-93% accuracy by capturing tem-
poral dynamics and acquiring hierarchical repre-
sentations [7], [8].

Feature engineering is vital for achieving suc-
cessful predictions. Studies consistently high-
light submission timeliness, login frequency, as-
sessment scores, and resource engagement as
key indicators in various educational settings [5],
[9]. These behavioral indicators measure student
effort and engagement more accurately than de-
mographic characteristics by themselves.

Despite technical progress, three remaining
challenges limited the practical impact. First,
most research uses Western institutional data,
particularly OULAD from the UK, raising ques-
tions about generalizability to Southeast Asia,
where technology access, learning behaviors,
and educational norms differ [10]. Second,
high-performing models often function as “black
boxes” which lack interpretability that educa-
tors require for trust and actionable insights
[11]. Third, few studies examine how predic-



tions translate to effective interventions or mea-
sure actual impact on student outcomes [12].

This paper provides a comprehensive com-
parative review of student performance predic-
tion approaches. We systematically analyze
datasets, preprocessing methods, feature engi-
neering strategies, modeling techniques, and
evaluation frameworks. We synthesize perfor-
mance across classical machine learning, deep
learning that identify the accuracy-complexity.
Based on this analysis, we articulate research
gaps that could be addressed with the ongoing
project at CADT, developing interpretable pre-
diction systems tailored to Southeast Asian con-
texts.

2 Related Work

2.1 Educational Data Mining and Learning
Analytics

EDM and LA emerged as distinct research dis-
ciplines leveraging digital education data to im-
prove learning outcomes [3]. Modern LMSs
like Moodle, Blackboard, and Canvas record in-
teraction logs including page views, assignment
submissions, forum posts, and video engage-
ment [1]. This data enables analyses impossible
through traditional observation, revealing behav-
ioral patterns that correlate with academic suc-
cess.

Machine learning dominates EDM due to its
capacity for handling complex, nonlinear educa-
tional data [13]. Classical methods like Logistic
Regression and Decision Trees established base-
line capabilities, demonstrating that performance
prediction was feasible [4]. Ensemble methods,
including Random Forest and XGBoost became
standard tools, consistently outperforming indi-
vidual classifiers [5], [6]. Deep learning archi-
tectures now represent the frontier, with LSTM
networks modeling temporal learning trajecto-
ries and attention mechanisms providing inter-
pretability [7],[8].

2.2 Benchmark Datasets

The Open University Learning Analytics Dataset
(OULAD) serves as the primary benchmark for
student performance prediction research [1]. Re-
leased by the UK Open University, OULAD
contains data for 32,593 students across 22
course modules, including demographic infor-
mation (age, gender, region, prior education),
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assessment scores, and approximately 10 mil-
lion interaction records aggregated daily. This
combination of static background, progressive
assessments, and behavioral trajectories enables
diverse predictive tasks from early dropout de-
tection to final grade classification.

Beyond OULAD, researchers use institution-
specific LMS logs from Moodle and Blackboard
deployments [14]. These datasets offer richer
contextual information but a limited size (typi-
cally hundreds to thousands of students) and lack
public availability, hindering replication. Some
studies incorporate MOOC data from platforms
like Coursera for large-scale dropout prediction,
though extreme class imbalance and different
learner populations limit generalizability [15].
Multimodal datasets augmenting LMS logs with
forum text, survey responses, and social network
data show promise but introduce collection and
integration complexity [16].

2.3 Machine Learning and Deep Learning

Approaches

Classical algorithms including Logistic Regres-
sion, Decision Trees, and Support Vector Ma-
chines provide interpretable baselines, typically
achieving 75-82% accuracy on OULAD [4].
Their transparency enables educators to under-
stand which features drive predictions, though
limited capacity for nonlinear patterns constrains
performance. Ensemble methods offer signif-
icant improvements. Random Forest improves
prediction accuracy by combining multiple de-
cision trees trained on random samples and of-
fers insight into which features matter most in
the prediction process, achieving 85-92% accu-
racy [5], [17]. XGBoost builds sequential en-
sembles where each tree corrects predecessor er-
rors, reaching 91% accuracy with careful tun-
ing [6]. These methods effectively balance accu-
racy and interpretability, making them practical
choices for many applications.

Deep learning approach capture complex pat-
terns and temporal dynamics. LSTM process
sequential behavioral data, modeling learning
trajectories over time and achieving 93% accu-
racy with particular strength in early prediction
scenarios [7]. Convolutional Neural Networks
adapted to educational data reach 92% accuracy
by learning hierarchical feature representations
[18].



3 Methodology

3.1 Dataset and Preprocessing

OULAD encompasses 32,593 student registra-
tions across seven course presentations and 22
modules [1]. Each record includes demograph-
ics (age, gender, region, prior education, disabil-
ity status), assessment results (quiz and assign-
ment scores, final grades), and daily aggregated
clickstream data capturing interactions with var-
ious resource types. The dataset supports multi-
ple prediction tasks, including dropout forecast-
ing and final grade classification.

Preprocessing addresses noise and inconsis-
tencies in raw LMS logs. Standard practices
include removing system-generated records and
early withdrawals, aggregating clickstream data
to weekly summaries for dimensionality reduc-
tion, encoding categorical variables through one-
hot or ordinal methods, addressing class imbal-
ance via SMOTE or class weighting, and nor-
malizing continuous features for scale-invariant
algorithms [1], [7]. Temporal aggregation
choices critically impact model architecture se-
lection, with weekly summaries suitable for tree-
based methods and sequential representations
enabling LSTM modeling. To ensure consistency
across modeling approaches, preprocessing typ-
ically involves several key steps that have shown
in Table 1:

3.2 Feature Engineering

Feature engineering transforms raw data into
predictive representations. Research converges
on 4 main categories that are typically used:

¢ Demographic Feature: Age, gender, re-
gion, and prior education level.

» Behavioral Feature: Number of logins, to-
tal clicks, time spent on resources, and fre-
quency of engagement.

* Assessment Features: Quiz and assign-
ment scores, submission timeliness, and
number of attempts.

* Temporal Features: Aggregated weekly
activity and learning trajectory measures
used in LSTM and CNN models.

3.3 Modeling Workflow

Studies follow consistent end-to-end pipelines
linking data preparation, feature design, model
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training, and interpretation [19].The overall pro-
cess is summarized in Figure 1, which illustrates
the typical workflow for student performance
prediction using learning analytics data. The
pipeline begins with data collection from Learn-
ing Management Systems (LMSs), followed by
data preprocessing to clean, encode, normalize,
and balance the dataset. The next stage in-
volves feature engineering, where demographic,
behavioral, assessment, and temporal features
are extracted to capture key learning character-
istics. Designed features spanning demograph-
ics, participation, assessments, and temporal pat-
terns serve as input to the model. Researchers
typically compare multiple approaches in paral-
lel. Simple baselines (Logistic Regression, De-
cision Trees) establish interpretable performance
floors [4]. Ensemble methods (Random For-
est, XGBoost) provide accuracy with moderate
complexity [5], [6]. Deep learning architectures
(LSTM, CNN) are applied when dataset size and
computational resources permit [7], [8].

Clear patterns link feature design that could
optimize model choice. Rich aggregate engage-
ment features pair naturally with tree-based en-
sembles that discover feature interactions [5],
[17]. Sequential representations suit recurrent
architectures that learn temporal dependencies
directly [7]. Hybrid approaches combining ag-
gregate and sequential features enable models
like CNN-LSTM to leverage both information

types [8].

Evaluation uses holdout test sets or cross-
validation with multiple metrics including accu-
racy, precision, recall, F1-scores, and AUC-ROC
[20]. Reporting multiple metrics provides com-
plete performance, especially important given
the class imbalance that leads to misclassifica-
tion in educational applications.

Interpretability analysis extracts actionable in-
sights. Tree-based models provide built-in fea-
ture importance scores revealing which behav-
ioral and assessment features contribute most
[51, [17]. Attention mechanisms visualize
learned feature weights for individual predic-
tions [21]. SHAP-based approaches compute
feature importance for any model type through
game-theoretic frameworks [22]. These expla-
nations build educator trust and generate insights
informing pedagogical improvements.



Table 1. Data Preprocessing Steps on the OULAD Dataset

Preprocessing Before Processing (Raw Data) After Processing (Cleaned Data)
Step
Data Cleaning Incomplete or duplicate records; early Removed missing entries and filtered

withdrawals included.
Feature Encoding

East Midlands).

Data Aggregation  Daily clickstream logs for each re-
source type.

Normalization Features with different scales (e.g.,

scores 0—100).

Class Balancing
tion.

Categorical variables (e.g., Region =

Unequal “Pass/Fail” class distribu-

out early withdrawals.

Converted to one-hot encoded binary
vectors (e.g., [0, 1,0, 0, ...]).
Aggregated into weekly summaries to
reduce dimensionality.

Scaled to 0-1 range using Min—-Max
normalization.

Applied SMOTE oversampling or
class-weight adjustment.

Feature

Engineering Model Training

Comparative Model
Analysis Evaluation

- Feature Importance. Metrics:
-Explanabity  f¢——  Accurac cy, Precision,
- Trade-of Discussion Recall, F1-Score

Figure 1. End-to-End Modeling Workflow for
Student Performance Prediction

Interpretation & ’

4 Comparative Performance Analysis

As shown in Table 2, synthesizing performance
across modeling approaches on OULAD reveals
clear accuracy-complexity trade-offs. Classical
methods provide transparency at 75-80% accu-
racy. Ensemble methods achieve 85-91% while
maintaining moderate interpretability through
feature importance. Deep learning reaches 92-
93% by modeling complex patterns and tempo-
ral dynamics.

4.1 Key Insights

Several critical patterns emerge from compara-
tive analysis. First, clear trade-offs exist between
complexity and interpretability. Simple models
provide transparent logic educators can under-
stand and trust, while complex models achieve
higher accuracy as opaque black boxes [11],
[19]. This matters significantly, requires explain-
ability, and incorrect predictions may trigger in-
appropriate interventions.

Second, marginal accuracy gains must be
weighed against marginal costs in data re-
quirements, computational resources, and inter-
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pretability loss. Moving from 80% (Classical
Machine Learning) to 90% (Ensemble Method)
represents a substantial improvement, which in-
creases complexity. Pushing from 90% to 93%
in the Deep Learning may not justify added
complexity for many practical applications, es-
pecially given real-world deployment uncertain-
ties not captured in test metrics. Although
deep learning models such as LSTM and CNN
demonstrate superior predictive accuracy, they
are often criticized for functioning as “black
boxes,” offering limited insight into how pre-
dictions are derived. Recent studies have ad-
dressed this by integrating Explainable Artifi-
cial Intelligence (XAI) methods, notably atten-
tion mechanisms within LSTM/CNN architec-
tures that highlight influential time steps or fea-
tures contributing to a prediction. Similarly,
SHAP (Shapley Additive exPlanations) values
have emerged as a model-agnostic technique to
quantify the contribution of each feature to the
final prediction. These methods provide inter-
pretive transparency without compromising per-
formance, enabling educators to understand not
only what the model predicts, but also why.

Third, feature engineering proves more im-
pactful than algorithm selection. Well-
constructed behavioral and temporal features en-
able simple models to achieve respectable per-
formance, while their absence limits sophisti-
cated algorithms [9], [17]. This suggests institu-
tional investments in data infrastructure and fea-
ture design expertise may yield greater returns
than pursuing cutting-edge algorithms.

Fourth, important features remain remarkably
consistent across modeling approaches. Engage-



ment volume, submission timeliness, and assess-
ment performance consistently emerge as top
predictors, whether measured through Logistic
Regression coefficients, Random Forest scores
[5], [17], [22]. This consistency provides confi-
dence these factors genuinely matter for student
success. Finally, optimal model choice are de-
pends on dataset size. Classical Machine learn-
ing methods suit small institutional datasets (<
1000 students) where limited data would cause
deep learning overfitting [4]. Ensemble meth-
ods are suitable for medium datasets (1000-5000
students), providing strong performance without
excessive complexity [5], [6]. Deep learning ad-
vantages emerge only for large datasets (> 5000
students) where high capacity can be properly
utilized [7], [8].

4.2 Ethical and Contextual Adaptation

Predictive systems must balance performance
with fairness and transparency. Privacy protec-
tion, consent, and algorithmic bias mitigation
are essential considerations. For Cambodia and
similar contexts, local data characteristics such
as mobile-first access and varying internet sta-
bility must be integrated into model adaptation.
Future work will involve applying these mod-
els to EMIS data under the Ministry of Educa-
tion, Youth and Sport (MoEYS) to explore early
dropout detection systems, following approaches
like Frontiers in Education

5 Discussion

The comparative analysis highlights both the po-
tential and the limitations of current machine
learning approaches for predicting student per-
formance. While deep learning models such as
LSTMs and CNNs achieve the highest reported
accuracies, their complexity and lack of inter-
pretability limit their adoption in real-world edu-
cational settings. Ensemble methods, especially
Random Forest and XGBoost, offer a strong
balance between predictive accuracy and trans-
parency, making them more practical for insti-
tutional deployment. A recurring insight across
studies is that feature engineering contributes
more to prediction quality than algorithm choice.
Behavioral indicators as login frequency, en-
gagement duration, and submission timeliness
con,sistently outperform static demographic fea-
tures [23]. This emphasizes the importance of
well-designed LMS data pipelines and careful
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preprocessing to ensure reliable and actionable
predictions.

However, most existing studies rely heavily on
the OULAD dataset, which reflects learning be-
haviors in Western onlinelearning contexts. Ap-
plying these models to developing regions like
Southeast Asia requires context-specific adap-
tation. For instance, Cambodian students of-
ten access LMSs through mobile devices under
inconsistent connectivity, which may influence
engagement patterns. These contextual differ-
ences must be reflected in both feature design
and model training to ensure fair and valid pre-
dictions [24]. Ethical and pedagogical consid-
erations also arise from predictive modeling in
education. Models trained on historical data risk
reproducing systemic inequities if fairness and
transparency are not explicitly addressed. Thus,
incorporating explainable Al (XAI) techniques,
such as SHAP or attention visualizations, is es-
sential to support educator trust and informed
decision-making. Lastly, translating predictions
into effective interventions remains a research
gap. High accuracy alone is insufficient unless
insights guide concrete teaching actions such as
early alerts or personalized feedback. Collabo-
ration between data scientists and educators is
therefore crucial for closing the loop between
predictive analytics and improved student out-
comes.

6 Future Work

6.1 Methodological Advances

Future research should prioritize interpretabil-
ity alongside accuracy, developing education-
specific explainability methods that maintain
high performance while providing transparent
insights educators can understand and act upon
[19]. Local explanation techniques analyzing
individual predictions could enable personal-
ized intervention planning. Multimodal learn-
ing combining LMS logs with text, video, and
survey data through cross-modal attention mech-
anisms may improve both performance and in-
terpretability by highlighting important modali-
ties. Temporal modeling deserves greater atten-
tion, given that learning is inherently dynamic.
LSTM and CNN adapted for sequential educa-
tional data could capture complex temporal de-
pendencies better than current approaches.



Table 2. Comparative Performance Analysis Selected Models on OULAD Dataset

Accuracy (%) Precision (%) Recall (%) F1-Score (%) References

Model

Logistic Regression 78.5 76.9
Decision Tree 80.2 79.5
Random Forest 85.7 84.3
XGBoost 91.2 90.8
LSTM 934 92.5
CNN 92.2 91.7

77.3 77.1 [11, [4]
80.1 79.8 [5], [6]
85.7 84.9 [6], [7]
91.0 90.9 [71, [13]
93.1 92.8 [2], [9]
91.9 91.8 [9], [17]

6.2 Dataset and Evaluation Improvements

The field would benefit from standardized
datasets and evaluation protocols enabling
meaningful cross-study comparison.  Multi-
institutional collaborative datasets would pro-
vide larger, more diverse samples. Standard-
ized feature definitions and formats would facil-
itate reproducibility. Common evaluation met-
rics and procedures would eliminate confusion
from varying assessment approaches. Repro-
ducibility standards with code sharing would ac-
celerate progress. Longitudinal research track-
ing students over extended periods would pro-
vide insights into the temporal dynamics that
current cross-sectional studies miss. Long-term
performance tracking would reveal stability and
change patterns in the education. A model sta-
bility investigation would identify reliability fac-
tors. Intervention effectiveness analysis would
validate practical utility. Seasonal and cyclical
pattern identification could improve prediction
timing and accuracy.

7 Conclusion

This paper synthesizes current approaches to stu-
dent performance prediction, analyzing datasets,
preprocessing methods, feature engineering,
modeling techniques, and evaluation frame-
works that highlight the importance of focusing
more on the quality of the data than the com-
plexity of each algorithm. While deep learning
will provide the highest accuracy, the assembly
methods offer the best balance of performance
and interpretability for small to medium datasets.
Current research is still limited by a focus on
the Western institution that emphasizes accuracy
over the interpretability. Furthermore, the future
implementation in the CADT will be address the
gaps by developing a contextualized, explain-
able, and intervention prediction system to sup-
port the data-driven decision making in South-
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east Asian education.
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Abstract

The digitization of documents presents a signif-
icant challenge, particularly for complex, low-
resource scripts like Khmer language. Stan-
dard Optical Character Recognition (OCR) sys-
tems often fail when faced with this mixed-
media content, hindered by the complexity and
scarcity of Khmer training data. This paper in-
troduces a modular, resource-efficient pipeline
designed to address these limitations through a
classification-first approach that identifies text
type prior to recognition, enabling the applica-
tion of specialized OCR engines accordingly.
At the core of our framework is a lightweight
text-type classifier based on the MobileNetV3
architecture, integrated within a pipeline that
leverages pre-trained models for layout analysis.
Trained on a custom Khmer dataset, our exper-
iments establish a performance benchmark for
this difficult task: the classifier achieves an accu-
racy of 74.6% on a held-out validation set. Cru-
cially, its performance remains stable at 74.5%
within the full end-to-end pipeline, indicating the
model is robust to noise from automated seg-
mentation. Our work validates the classification-
first strategy as essential for mixed-media OCR
and provides a realistic benchmark for this low-
resource task.

Keywords:  Optical Character Recognition
(OCR), Khmer Language, Deep Learning, Text
Type Classification, Document Analysis

1 Introduction

As Cambodia accelerates its national digital
transformation, digitizing its vast archive of of-
ficial documents is a critical priority. Key docu-
ments, such as birth certificates, serve as founda-
tional records for civil registration but exist pri-
marily in paper format. This creates significant
bottlenecks in data management, retrieval, and
analysis, processes that remain manual, slow,
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and prone to error.

The primary challenge in automating the dig-
itization of these documents is their mixed-
media content structure: a combination of
standardized, machine-printed template text and
highly variable handwritten entries. Standard
Optical Character Recognition (OCR) engines,
which are typically optimized for only one text
type, struggle to process this mixed content ac-
curately [1].

This core problem is exacerbated by two fur-
ther constraints inherent to the Khmer language
context. First, the Khmer script is inherently
complex, featuring a large character set and di-
acritics that challenge many OCR architectures.
Second, there is a significant scarcity of large-
scale, annotated datasets for Khmer document
OCR [2],[3]. This data scarcity, in particular,
makes it computationally infeasible to train a
single, large, state-of-the-art model to handle all
challenges simultaneously. Therefore, our work
focuses specifically on solving the mixed-media
problem through an efficient, modular approach
practical within these low-resource constraints.

Initial research for this project considered a
monolithic, end-to-end pipeline leveraging state-
of-the-art Transformer-based models, such as
TrOCR [4], which builds upon prior CNN-RNN
architectures [5]. However, iterative analysis
revealed that such an approach was imprac-
tical due to the aforementioned data and re-
source constraints. Consequently, a strategic
pivot was made toward a more modular and effi-
cient pipeline. This paper presents a novel hy-
brid approach that intelligently separates doc-
ument analysis from targeted text recognition.
The primary contribution is the development of a
lightweight, highly accurate text-type classifier,
built on a MobileNetV3 architecture [6]. This
component enables the system to first identify
the document’s structure using robust tools like
PaddleOCR [7], classify each text segment as ei-



ther printed or handwritten, and then apply the
most suitable recognition engine for each type.
The objectives of this work are to:

» Establish a robust baseline for docu-
ment analysis by leveraging a pre-trained
model (PP-DocLayout & RT-DETR-L) to
perform layout segmentation on complex,
semi-structured Khmer documents.

* Design, train, and evaluate a lightweight
text-type classifier (MobileNetV3) to ac-
curately distinguish between printed and
handwritten Khmer text snippets, quantify-
ing its performance in both ideal and real-
world conditions.

* Demonstrate the value of a classification-
first OCR pipeline by integrating the clas-
sifier and using quantitative metrics (CER)
to prove its superiority over a naive, single-
engine approach for mixed-media docu-
ments.

2 Related Work

Research into Khmer OCR has evolved signifi-
cantly, moving from traditional machine learning
methods targeting isolated characters to end-to-
end deep learning systems capable of handling
complex documents.

2.1 Evolution from Traditional Methods

Early research focused on recognizing isolated,
printed Khmer characters using traditional ma-
chine learning. Techniques such as Support
Vector Machines (SVMs) were successfully ap-
plied, achieving high accuracy on clean, well-
segmented characters [8]. However, these meth-
ods were often highly dependent on the quality
of pre-processing and character segmentation,
making them less robust for noisy, real-world
documents with varied layouts.

2.2 Modern Deep Learning Approaches

The advent of deep learning brought more pow-
erful and flexible solutions [9]. Key advance-
ments in Khmer OCR include:

* Efficient Architectures: Annanurov and
Noor demonstrated that compact CNN
models could effectively recognize hand-
written consonants, proving the feasibility
of efficient models for resource-constrained
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environments [10]. This insight is central to
our work’s focus on lightweight models.

* Historical Documents: For the unique
challenges of historical texts, researchers
developed  specialized datasets like
SleukRith for palm-leaf manuscripts [11]
and applied sophisticated encoder-decoder
models to handle stylistic variations and
document degradation [12].

* State-of-the-Art Models: Recent work by
Buoy et al. has advanced the field with
Transformer-based models specifically de-
signed to handle the long, unbroken text
lines common in Khmer [3]. This work,
along with the introduction of the KhmerST
dataset by Nom et al. [2], has highlighted
that even state-of-the-art architectures still
face significant challenges with the Khmer
script, underscoring the need for domain-
specific solutions.

2.3 Research Gap

Despite these advances, a specific research gap
remains in the processing of semi-structured
official documents that contain a mixture of
printed and handwritten text. Prior work has
largely focused on either purely printed or purely
handwritten text, or on different document types
(e.g., historical manuscripts, scene text). The
challenge of efficiently and accurately handling
mixed-media content in a single pipeline for of-
ficial documents like birth certificates is largely
unaddressed. This project directly targets this
gap by proposing a modular pipeline designed
to classify and process this mixed content.

3 Methodology

To address the challenges of digitizing mixed-
media Khmer documents, we designed a modu-
lar, multi-stage pipeline that prioritizes resource
efficiency and accuracy. Our approach combines
powerful pre-trained models for general tasks
(like layout analysis) with a lightweight, custom-
trained classifier for the specialized sub-task of
differentiating text types. This section details the
overall architecture and each of its core compo-
nents, from initial image preprocessing to the fi-
nal targeted text recognition.
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3.1 Pipeline Architecture Overview

The system ingests a scanned document image
and processes it through a sequential workflow,
as illustrated in Figure 1. The pipeline consists
of four main stages: (1) automated image pre-
processing to normalize input; (2) layout analy-
sis to detect all text regions; (3) text-type classi-
fication to label each region as printed or hand-
written; and (4) targeted text recognition where
the appropriate OCR engine is applied based on
the classification.

3.2 Document Preprocessing

To standardize input and improve the perfor-
mance of subsequent modules, a series of au-
tomated image processing steps are applied us-
ing the OpenCV library. This crucial stage
transforms raw, often-degraded scans into clean,
machine-readable images. The visual progres-
sion of this workflow is detailed in Figure 2. The
algorithmic process is as follows:

1. Grayscale Conversion: The input 3-
channel RGB image is first converted to a
single-channel grayscale format.

2. Noise Reduction: A Gaussian blur with
a 5x5 kernel is applied to mitigate high-
frequency noise from the scanning process
without overly blurring character edges.
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3. Skew Correction: The dominant angle of
the text is detected and corrected. This is
achieved by first applying adaptive thresh-
olding to a temporary copy of the image,
finding text contours, and calculating the
orientation of the minimum area rectan-
gle enclosing these contours. The original
grayscale image is then rotated by this cal-
culated angle to ensure all text lines are hor-
izontal.

4. Final Binarization: A second adaptive
thresholding is applied to the deskewed
grayscale image. Unlike global thresh-
olding, this method calculates a localized
threshold for different regions of the im-
age, making it highly robust to variations in
lighting and background noise, resulting in
a clean final output.

3.3 Layout and Text-Type Analysis

This phase performs a two-step analysis of the
document’s content. First, a pre-trained layout
detector identifies all logical text regions. Each
detected snippet is then passed to our novel,
custom-trained text classifier, which labels it as
either ‘printed’ or ‘handwritten’. This critical
step prepares each snippet for the appropriate
recognition engine in the final stage. The models
used are summarized in Table 1.
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Figure 2: The automated preprocessing workflow from (a) Raw input, to (b) Grayscale, to (c)
Deskewed, and finally (d) the Final binarized output.

Table 1: Core Models and Their Roles in the
Pipeline

Component Model Used Role
Layout Analysis  PP- Detects logical
DocLayout regions (text,

tables).

Table Cell Detec- RT-DETR-L Detects cells in

tion table.

Text type Classi- MobileNetV3  Classifies regions

fier as ‘printed’ or
‘handwritten’.

Printed OCR Tesseract v5 Transcribes text

from ‘printed’
regions.

3.3.1 Layout Analysis with PaddleOCR

Our pipeline employs a two-stage approach
for document structure detection, leveraging pre-
trained models from the PaddleOCR framework
[7]. This strategy allows us to analyze both the
high-level document layout and the fine-grained
table structures without needing to train custom
detectors.

First, for overall document structure, we use
the PP-DocLayout_plus-L. model. This identi-
fies high-level layout elements, such as text para-
graphs and full table regions.

once a table region is identified, we use a
specialized RT-DETR-L_wired table_cell det
model trained for table cell detection. This
model processes the cropped table area to pre-
cisely localize individual cells, preparing them
for subsequent analysis.
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3.3.2 Text-Type Classifier: Architecture,
Training, and Inference

A key contribution of this work is the devel-
opment of a lightweight and accurate classifier
capable of distinguishing printed from handwrit-
ten Khmer text snippets. This section details its
architecture, the dataset it was trained on, and its
role during the pipeline’s inference process.

Architecture and Dataset The classifier uses
a MobileNetV3-Large architecture [6], pre-
trained on ImageNet. Input snippets (224x224)
pass through Inverted Residual Blocks and a
Global Average Pooling layer, producing a fea-
ture vector fed to a fully-connected layer that
outputs logits for printed and handwritten classes
(Figure 3). Training used a custom dataset of
1,677 text regions from Cambodian birth cer-
tificates (956 printed, 721 handwritten), manu-
ally cropped and labeled with PPOCRLabelV3,
a tool from the PaddleOCR suite. The dataset
was stratified into 1,342 training and 335 valida-
tion samples (Table 2), with this fixed split used
for all training and evaluation instead of k-fold
cross-validation.

Table 2: Dataset Split for Text-Type Classifier

Class Training Validation Total
Printed 765 191 956
Handwritten 577 144 721
Total 1,342 335 1,677
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Table 3: Text-Type Classifier Hyperparameters

Parameter

Value

Architecture

Model Architecture
Pre-trained Weights
Input Size

MobileNetV3-Large (x1.0)
ImageNet
224 x 224 x 3

Training Hyperparameters
Adam
Piecewise (0.001 - 0.0001)
Step Decay (at epoch 15)
32

Optimizer
Learning Rate

LR Scheduler
Batch Size

Epochs

Loss Function
Data Augmentation
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Cross-Entropy Loss (CELoss)
RandCrop, RandFlip, AutoAugment

Training Training is performed using the
Adam optimizer to minimize categorical cross-
entropy loss. For this binary task, the model’s
final layer outputs two logits corresponding to
each class, which are passed through a Softmax
activation function. The loss is then calculated
using one-hot encoded labels with the following
formula:

N 1
1
LCE:_NZZO zclngzc (D

where y; . denotes the one-hot encoded true la-
bel and p; .. the predicted probability for sample
1 and class c. Key training hyperparameters are
detailed in Table 3.

Inference Workflow During inference, each
text snippet detected by the layout analysis mod-
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ule is resized to 224x224 and passed through the
trained MobileNetV3 classifier. Based on the
predicted class, snippets are routed as follows:

¢ Printed text: Sent to Tesseract OCR, con-
figured with the Khmer language pack, for
transcription.

* Handwritten text: Bounding box and class
label are preserved for future processing by
a specialized handwritten recognizer.

This workflow allows the pipeline to effi-
ciently direct each snippet to the most suitable
recognition engine. The modular design also
enables straightforward future integration of a
dedicated handwritten OCR module, maintain-
ing the pipeline’s efficiency and adaptability.



3.3.3 Targeted Text Recognition

After the classifier sorts the text snippets, they
are routed to specialized recognition engines.
This targeted approach is the final and crucial
stage of the pipeline.

Printed Text Recognition Snippets classified
as ‘printed’ are sent to the Tesseract OCR engine
for transcription. We use the standard Tesseract
model configured with the official Khmer lan-
guage pack, as detailed in Table 4. This engine
forms the baseline for printed text recognition
within our pipeline.

Table 4: Configuration for the Printed OCR En-

gine
Parameter Value
OCR Engine Tesseract v5.3.3
Language Pack Khmer (‘khm*)
OCR Engine Mode (OEM) 3 (Default)

Page Seg. Mode (PSM) 3 (Default)

Handwritten Text Recognition Snippets clas-
sified as ‘handwritten’ are preserved with their
bounding boxes and class labels but are not
transcribed. Although developing a handwrit-
ten recognition model was beyond the current
scope, the pipeline’s modular design allows for
the seamless integration of a specialized model
such as a fine-tuned TrOCR in future work.

3.4 Evaluation Metrics

The performance of our custom text-type clas-
sifier is evaluated using four standard metrics
derived from the confusion matrix components:
True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN). The
formulas for Accuracy, Precision, Recall, and
F1-Score are standard and defined as follows:

A c TP+TN @)
ccuracy =
Y= TPYTN+FP+FN
TP
Precision = ———— 3
recision TPLFP 3)
TP
Recall = ——— 4
T TPYFN )
Fl-Score — 2 x Precision x Recall )

Precision + Recall
These metrics provide a comprehensive assess-
ment of the classifier’s performance, which is
critical for the overall success of the pipeline.
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4 Experiments and Results

To evaluate our proposed pipeline, we conducted
experiments on both the isolated text-type clas-
sifier and the end-to-end system. The results
highlight both the potential of our approach and
the challenges of bridging the gap between con-
trolled validation and real-world application.

4.1 Experimental Setup

The classifier was trained in a cloud-based en-
vironment on a single NVIDIA T4 GPU, using
PyTorch Lightning and Weights & Biases for
experiment tracking. The pipeline was imple-
mented in Python 3.9, leveraging PaddlePaddle,
OpenCV, and Pytesseract.

4.2 Classifier Performance on Curated
Snippets

The classifier’s baseline performance was first
established by evaluating it on the held-out val-
idation set, which consists of 335 manually
cropped text snippets. These snippets were
sourced from real documents and intentionally
represent a range of visual qualities, thereby
providing a realistic benchmark for the classi-
fication task itself, isolated from any pipeline-
induced artifacts.

The overall results of this evaluation are pre-
sented in Table 5, with a detailed breakdown of
the predictions shown in the confusion matrix in
Figure 4. The model achieved an overall accu-
racy of 74.6 %, a figure that highlights the inher-
ent difficulty of reliably distinguishing between
printed and handwritten Khmer text even under
these controlled conditions.

A closer analysis of the errors in Figure 4 re-
veals a key characteristic of the baseline model.
The primary source of error is the misclassifica-
tion of 74 handwritten snippets as printed, which
is also reflected in the low Recall for the hand-
written class (48.6%) in Table 5. This indi-
cates a baseline bias in the model towards the
‘printed’ class. This behavior is likely because
many instances of neat or simple handwriting in
the dataset are visually similar to printed fonts,
making them difficult for the model to differen-
tiate without further contextual features. This
baseline performance provides a crucial point of
comparison for the end-to-end pipeline evalua-
tion.



Table 5: Performance Metrics on Curated Vali-
dation Set

Table 7: Performance Metrics for Text-type
Classifier in End-to-End Pipeline Test

Class Precision Recall F1-Score Class Precision Recall F1-Score
Printed 70.9% 94.2% 80.9% Printed 95.6% 59.2% 73.1%
Handwritten 86.4% 48.6% 62.2% Handwritten 624% 96.2% 75.7%
Macro Avg. 78.6% 71.4% 71.6% Macro Avg. 79.0% 77.7% 74.4%
Accuracy 74.6 % Accuracy 74.5%

Confusion Matrix (Counts)

handwritten - 70 74

True Label

printed - 11

handwritten
Predicted Label

printed

Figure 4: Confusion Matrix on the Curated Val-
idation Set (335 Samples).

4.3 End-to-End Pipeline Performance and
Challenges

While the classifier’s performance on curated
snippets is a strong proof-of-concept, its true ef-
fectiveness was evaluated by processing 20 com-
plete, unprocessed birth certificates through the
end-to-end pipeline. In this scenario, the lay-
out analysis module first segments the document,
and these automatically generated “wild” snip-
pets are then fed to the text-type classifier.

The performance of the classifier within this
live pipeline dropped significantly. The detailed
confusion matrix from this real-world test is pre-
sented in Table 6, and the corresponding perfor-
mance metrics are in Table 7.

Table 6: Confusion Matrix for Classifier in End-
to-End Test

Predicted Predicted
Printed Handwritten Total

Actual Printed 241 166 407
Actual Handwritten 11 275 286

The results reveal a surprising and important
finding. The classifier’s end-to-end accuracy of
74.5% is nearly identical to its baseline per-
formance on the manually cropped validation
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set (74.6%). This consistency suggests that our
model, having been trained on a realistic dataset
of varied quality, is robust to the additional
noise and segmentation artifacts introduced by
the live pipeline. The analysis confirms that the
primary bottleneck is not the pipeline’s segmen-
tation stage, but the fundamental difficulty of the
classification task itself, which our 74.6% base-
line accurately reflects.

4.4 End-to-End Pipeline Performance and
Error Analysis

When the classifier is integrated into the end-to-
end pipeline, its overall accuracy remains stable
at 74.5% (Table 7). However, a comparison of
the confusion matrices reveals a fascinating and
critical shift in the model’s error pattern.

While the baseline model’s primary error was
misclassifying ‘handwritten’ text as ‘printed’
(Figure 4), this pattern completely reverses in
the live pipeline. As shown in Table 6, the pre-
dominant error becomes the misclassification of
166 ‘printed’ snippets as ‘handwritten’. This re-
versal strongly suggests that artifacts from the
automated segmentation stage are the primary
cause. When clean printed text is corrupted with
noise or table lines, its visual features begin to
resemble handwriting, causing the classifier to
error. This demonstrates that while the overall
accuracy is similar, the nature of the challenge
changes significantly between curated and real-
world pipeline conditions, providing a deeper in-
sight into the model’s behavior.

4.5 Downstream OCR Performance

To quantify the impact of our classification-first
approach, we evaluated the performance of a
standard OCR engine (Tesseract v5) on both
printed and handwritten text snippets from our
curated validation set. The primary metric used
was the Character Error Rate (CER), a standard



for evaluating OCR accuracy. CER is calcu-
lated as the Levenshtein distance between the
predicted text and the ground truth, normalized
by the length of the ground truth text:

S+D+1

CER =
N

(6)
where S is the number of substitutions, D is the
number of deletions, I is the number of inser-
tions, and NV is the total number of characters in
the ground truth. A lower CER indicates higher
accuracy.

Table 8: Tesseract CER on Curated Text Snip-
pets

Text Type Snippets CER (%)
Printed 191 43.71%
Handwritten 144 96.35%

The results clearly illustrate the necessity of a
hybrid pipeline. While Tesseract is designed for
printed text, it still yields a high CER of 43.71%,
underscoring the inherent difficulty of process-
ing scanned, low-quality Khmer documents. As
expected, its performance on handwritten text is
extremely poor, with a CER of 96.35%, render-
ing the output unusable. This confirms that a sin-
gle OCR engine is insufficient for mixed-media
documents and validates our approach of sepa-
rating text types before recognition.

4.6 Comparative Analysis

Our classification-first pipeline represents a
pragmatic compromise compared to other com-
mon strategies for mixed-media OCR. Unlike
a monolithic End-to-End Unified Model (e.g.,
TrOCR) [4], which requires massive datasets
and computational resources often unavailable
for low-resource scripts like Khmer, our hybrid
method is lightweight and modular. It is also
more efficient than Engine Blending, which is
computationally expensive as it processes each
snippet with multiple engines and fails to solve
the core problem if no specialized engine for a
given text type exists. While the performance of
our approach is dependent on the classifier’s ac-
curacy, it provides a practical and adaptable so-
lution.

To provide a quantitative analysis of our ap-
proach’s value, we compare its performance
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against a naive, single-engine strategy using the
CER results from our validation set. A naive
approach would apply Tesseract to all snippets,
whereas our hybrid approach uses the classifier
to route them first, as summarized in Table 9.

The data proves the necessity of our
classification-first method. The naive ap-
proach is severely degraded by Tesseract’s
96.35% CER on handwritten text, leading to an
unusable overall CER of 65.42%. Our classifier
acts as a critical filter, demonstrating that an
intelligent, pre-recognition classification step
is a mandatory component for achieving viable
OCR on mixed-media documents.

4.7 Pipeline Output on Full Documents

To assess the system’s real-world capabilities
and provide a qualitative example of its opera-
tion, a complete birth certificate was processed
through the entire pipeline. Figure S provides
a visual narrative of this process, illustrating the
output at each critical stage and demonstrating a
successful end-to-end run.

The process begins with the founda-
tional layout analysis stages. First, the
PP-DocLayout_plus-L model accurately
identifies the document’s high-level structure,
separating text regions from the main table
(Fig. S5a). Next, the specialized RT-DETR-L
model processes the detected table region to
precisely localize individual cells (Fig. Sb).
The final classified output (Fig. 5Sc) is the
culmination of the entire workflow and serves
as a powerful proof-of-concept for our hybrid
approach. This image visually confirms that
the custom classifier has successfully labeled
the machine-printed template text (blue) and
the variable handwritten entries (red) on this
document. This successful differentiation is the
critical step that enables targeted and accurate
text recognition in the final stage.

5 Conclusion and Future Work

In this paper, we presented a modular, resource-
efficient OCR pipeline for semi-structured
Khmer documents, successfully demonstrating
the value of a classification-first approach. Our
core contribution is the development and rigor-
ous analysis of a lightweight text-type classifier.

Our key findings are threefold. First, we
quantitatively proved the necessity of our ap-
proach: applying a standard OCR engine to



Table 9: Quantitative Comparison of Naive vs. Hybrid OCR Approach on the Curated Validation Set

Approach Description Resulting CER (%)
Naive Approach Tesseract is applied to all 335 snippets (printed and 65.42%
handwritten). Performance is degraded by the en-
gine’s failure on handwritten text.
Our Hybrid Approach The classifier first separates text types. Tesseract 43.71%

is only applied to the 191 printed snippets. The
144 handwritten snippets are routed away, avoid-

ing catastrophic errors.
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Figure 5: Visual results from the end-to-end pipeline. (a) The layout analysis module correctly identifies
high-level text and table regions. (b) A specialized model detects individual cells within the table. (c)
The final output demonstrates successful classification, with printed text (blue) and handwritten entries

(red) clearly distinguished.

the wrong text type results in a near-total fail-
ure (96.35% CER on handwritten text), mak-
ing a pre-recognition classification step manda-
tory. Second, we established a realistic perfor-
mance benchmark for this difficult task, show-
ing our classifier achieves 74.6% accuracy on a
validation set of varied-quality snippets. Third,
we demonstrated the model’s robustness, as its
performance remains stable at 74.5% within the
noisy, end-to-end pipeline. This indicates the
primary challenge is the inherent visual com-
plexity of the text, not segmentation artifacts.
Our work establishes a robust foundation for
future development. The clear next steps are:

While the
future work

¢ Robustness Enhancement:
model showed robustness,
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should still focus on improving the classi-
fier by training it on an even more diverse
dataset, including automatically segmented
(“wild”) snippets.

e Handwritten Recognition Integration:
The pipeline’s modular design allows for
the seamless integration of a dedicated
handwritten Khmer recognition model
(e.g., a fine-tuned TrOCR) to achieve full
end-to-end transcription.

* Post-processing NLP: The structured
JSON output enables further natural lan-
guage processing, such as developing
modules for key-value pairing to link
labels (like “Name”) to their corresponding



transcribed text.

In conclusion, this project provides a sig-
nificant step towards a practical solution for
low-resource, mixed-media OCR, presenting not
only a functional proof-of-concept but also a
data-driven validation of the classification-first
strategy and a clear, realistic roadmap for future
research.

This paper was drafted by the authors. Lan-
guage editing tools (e.g., Al-assisted writing
support) were used only for grammar and phras-
ing; all content, results, and analyses are original
and authored by the listed contributors.
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Abstract

Recent research has increasingly focused on
resource allocation strategies tailored for
effective use of resources to meet the diverse
Quality of Service (QoS) requirements of 5G
networks, especially within the Open RAN (O-
RAN) architecture. This paper presents an
evaluation of the E2E QoS of millimeter wave
communications in 5G O-RAN networks by
investigating key QoS metrics, including
throughput, latency, and signal-to-interference-
plus-noise ratio (SINR). The result provides
critical insights for the design and optimization
of resource allocations in the O-RAN networks.
Accordingly, we proposed an extensible
Application (xApp) that resides in the near-real-
time RAN intelligent controller (near-RT RIC),
tackling the allocation of resource blocks based
on QoS requirements of different services and
varied traffic conditions in the near real-time
scale.

Keywords: Resource allocations, Network

slicing, O-RAN, RIC
1 Introduction

The ITU-R M.2083 defined three usage scenarios
for IMT-2020, such as enhanced mobile
broadband (eMBB), massive machine type
communications (mMTC), and ultra-reliable and
low latency communications (uRLLC) [1].
Specifically, eMBB requires substantial
bandwidth and throughput, uRLLC demands
ultra-low latency and high reliability, while
mMTC emphasizes efficient resource allocations
for massive device connectivity. These diverse
requirements  significantly make resource
allocations in 5G networks, particularly with the
O-RAN architecture, become even more
complex that involving optimizing network
resources to meet various service requirements.
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The rapid growth of diverse applications
demands more resources in the 5G networks,
including compute, storage, network, and radio
resources (e.g., frequency, bandwidth, and
physical resource blocks) that require both
flexibility and precision in the resource
management process.

To address this need, network slicing has
emerged as the 5G's new features, enabling
technology to meet the requirements of each
service with abstracted of the physical resources.
A network slice acts as a virtualized network that
is isolated between different services to meet its
requirements. Network slicing is a logical self-
contained network across the network
infrastructure, including RAN, transport, and
core. However, this technology also introduces
challenges in terms of isolation, customization,
elasticity, and end-to-end lifecycle management.

Building on the foundations of C-RAN and V-
RAN, O-RAN architecture advances the RAN
through four guided key principles, including
disaggregation, virtualization, open interfaces,
and intelligent closed-loop control, enabling
openness and interoperability, eliminating
vendor lock-in [2]. Central to the O-RAN
architecture are two types of RAN intelligent
controller (RIC), which are categorized into near-
real-time (near-RT) RIC and non-real-time (non-
RT) RIC. Each RIC is designed to control and
optimize RAN performance on different time
sensitivities based on the decision-making
process. The non-RT RIC, operating on time
scales above 10 ms, is responsible for
implementing the policy enforcement and
training of AI/ML models. The near-RT RIC
operates in the 1 ms to 10 ms time range and
executes near-real-time control functions guided
by the policies in the non-RT RIC through the A1
interface. Together, these components enable
intelligent and flexible resource allocations



tailored to the QoS requirements of diverse
network slices in O-RAN environments.

This paper presents a comprehensive E2E QoS
analysis of mmWave communications within a
5G O-RAN network. Key performance metrics,
including throughput, latency, and SINR, are
evaluated to illustrate the important resource
allocations tackling in the networks. We
proposed a method that enables RAN to allocate
the physical resource blocks (PRB) to each
service with respect to their QoS, priority, and
traffic conditions in near-real time. Additionally,
a detailed discussion of the simulation
configurations is provided to enhance the
accuracy and reliability of experimental
evaluations, providing deeper insights into the
network  performance in 5G  O-RAN
environments.

2 Literature Review

2.1 Resource Allocations

Recent studies in 5G network slicing have
explored various resource allocation mechanisms
to meet the diverse requirements across slices.
Two approaches have emerged in the literature
are share-based and reservation-based allocation
schemes [3]. Share-based approaches assign a
predetermined network share to each slice, which
can be dynamically redistributed across nodes
according to traffic variations. This model
supports high efficiency with statistical
multiplexing and is particularly suitable for
elastic services, such as eMBB. However, share-
based models do provide only statistical
guarantees and poor isolation, thus making them
less appropriate for mission-critical services
requiring strict QoS compliance. Reservation-
based approaches contrast and allow slices to
request and pre-reserve guaranteed resources,
with high isolation and hard performance
guarantees. Though good for latency-critical
services like URLLC, such methods have lower
efficiency and higher complexity due to traffic
prediction and admission control overhead.

The Xu et al. [4] survey details the 5G
networks' distribution of power and bandwidth
resources between various base stations. Methods
like OFDMA and NOMA allow for the best
possible speed with reduced interference.
Systems use relays or cloud control to have more
control over the resources. The mechanism is
designed to cater to many users with varying
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Figure 1. Slicing Architecture in O-RAN

demands. Most of the techniques are, however,
elaborate, need accurate channel information,
and are hard to make real-time modifications.
They are also prone to being overcome by
network slicing and ensuring fair service to all
classes of users. These weaknesses limit their use
in dynamic environments like O-RAN.

2.2 Network Slicing

Key enabling technologies of network slicing are
Network function virtualization (NFV) and

Software-defined networking (SDN). Their
combined implementation offers greater
scalability,  flexibility,  availability, and

programming requirements while lowering both
capital expenditures (CAPEX) and operational
expenditures (OPEX). The decoupling of control
and data plane in SDN enables the independent
deployment of the traffic forwarding and
decision-making. A centralized SDN controller
maintains a global, logical view of the network
infrastructure, optimizing traffic management,
service provisioning, and resource allocation.
The NFV-MANO manages the resource
allocations for VNFs and the life cycle of the
network slices, including the creation, updating,
and termination of network functions by VM or
containers [5].

In accordance to O-RAN Alliance slicing
architecture [6], the near-RT RIC, and the O-CU
Control Plane (O-CU-CP) are shared across
multiple network slices, while each slice is
assigned a dedicated O-CU User Plane (O-CU-
UP) instance to ensure isolation at the user-data
level as illustrated in Figure 1. As defined by
ETSI NFV-MANO [7], NFV Orchestrator
(NFVO) can reside in the Service Management
Orchestrations (SMO) responsible for providing
FCOM functionality, termination of O2 IMS, and



Table 1. Proposed Algorithm Scheme

SET NSS 1 = mission-critical services
SET NSS 2 = general services
Phase 1: Resource Allocation
Preconfigure resources for slices, RB;or
If Slice = NSS 1 then

SET RB.ix && Latency < 100 ms &&
Priority level = “high”
else

SET RBgenerar && Latency < 300 ms
&& Priority level = “low”
9: end if

R LR

10:  Phase 2: Operation

11:  Clustering U = {Ucrit, Ugen}

12:  IfNSS 1’s traffic > threshold, then
13: RBcrit congest — (Ucrit X RBmx) + RBcrit
14: else NSS 2’s traffic > threshold

15: RBgen congest = (Ngen % RBgen ) + RBgeneral
16: end if

potentially NFO and O2 dms support, while also
offering some element management capabilities.
The Virtual Network Function Manager (VNFM)
also maps to SMO, handling NFO-related
operations and potentially terminating parts of
the O2 DMS interface. The Virtualized
Infrastructure Manager (VIM) maps to O-Cloud
and provides IMS and DMS functionalities for
managing VM-based virtualized resources. In O-
RAN, network slice components are followed by
3GPP [8], including the Network Slice
Management Function (NSMF), Network Slice
Subnet Management Function (NSSMF), and

Network Function Management Function
(NFMF). NSMF interprets network slice
requirements into network slice subnet

requirements and distributes those requirements
to the NSSMF. NSSMF is responsible for the
management and orchestration of the network
slice subnet instances (NSSIs). Connected to the
NFV-MANO, they can dynamically allocate
resources to network functions. Finally, NFMF is
responsible for managing the lifecycle and
configuration of individual network functions
(such as VNFs and PNFs) involved in the
network slice.

3 Proposed Scheme

This paper proposed a resource allocation based
on network slicing, which is controlled by the
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xApp residing in the near-rt RIC of the O-RAN
architecture. Two types of services are being
sliced, one for mission-critical services (e.g.,
MCPTT voice, MCPTT video, and MCPTT data)
and the other for general applications (e.g.,
internet traffic, streaming services). The purpose
of this work is to allocate dedicated PRBs to each
type of application in isolation to meet its QoS
requirements, including throughput and latency.
The network slice for critical applications is
resource prioritized, providing lower latency,
while the general services slice is given with
lower resource priority with best-effort in terms
of latency.

The resource management is divided into
two critical phases: (i) Resource allocations and
(i) Operations, where the resource allocations
xApp dynamically adapts resource blocks
distribution in response to near real-time
network conditions and traffic demands. The
system process is illustrated in Table 1.

3.1 Resource Allocations

Both slices operate on a shared the same
frequency spectrum and are provided with a pre-
configured number of resource blocks. At the O-
DU level, each slice is assigned a MAC
scheduler for resource blocks allocations. The
resource blocks are being distributed in terms of
bandwidth in a normalized traffic condition,
where 20 MHz bandwidth is preconfigured for
the mission-critical services slice and 30 MHz is
pre-allocated for the general services.

At a higher level, which is the near-rt RIC,
the xApp is a container designed to perform
resource allocation per slice to meet the QoS of
each service in the network. The XxApp monitors
and collects the data from E2 nodes (e.g., O-CU
and O-DU) and O-RU through E2, which is a
logical interface in O-RAN. The Al policy,
which defined the optimization objectives such
as latency and throughput target, guided the
execution of the xApp through Ol interface.

3.2 Operations

During runtime, UEs are clustered into two
different types based on their service requested
characteristics: mission critical service users and
general service users. UEs with similar service
types are mapped to its VM, hosting a dedicated
service, schedule with pre-allocated resource
blocks. In case of a congestion event in both
slices, the xApp is triggered and modifies the



update of the E2 performance through near-rt
RIC guided by the Al policy from the non-rt
RIC. In addition, the number of resource blocks
required to be reallocated is calculated in the
accounts of the total number of users and the
resource blocks needed for each user, in addition
to the allocated resources to each service
respectively. For instance, if the critical slice
experiences overload, it temporarily borrows the
reserve resource blocks to uphold its QoS
guarantees. Once the network conditions are
normalized, it releases those borrowed resources
and restores the original resource allocation
scheme.

Let RB:o:a denotes the total of resource blocks,
RB;eservea Tepresent the reserved resource block,
RB.i; as the resource block allocated to mission-
critical services, and RBgenerat for the resource
block of general service. The RBiw can be
expressed as:

RBtotal = RB/‘eserved + RBL‘I‘ft + RBgeneral (1)

Let RBavair i denote 80% of the total available
resource block reserved for mission-critical
services, and RBuviai gen Tepresents 20% of the
total available resource block reserved for
general services. The equation for resource
allocation based on traffic conditions can be
expressed as:

RB/‘eser'ved = RBavail_cr‘i + RBavial ' gen (2)
RBuvait cri = RBreserved X —— 3)
avail_crt reserve 1()0%
20
RB it gen = RBeserved % TO% (4)

Using (3) and (4), the RB)eserveq can be calculated
as:

20

80
RBeserved = (RBr‘eservea' X ) + (RB reserved % 100 %)

100%

)

Let RBcri congest be the total number of resource
blocks required for U mission-critical users, and
RBgen congest denotes the total number of resource
blocks required for N general service users. The
equations can be expressed as:

RBcrit_congest = (Ucrit X RBms) + RBcrit (6)
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Table 2. Simulation Parameters

Parameters Value
Center frequency 30 GHz
Bandwidth 80 MHz
Numerology 2
BS Tx power 40 dBm
Antenna height BS=25m,UE=1.5m

MIMO antenna

Antenna gain

BS =8x8, UE=4x 4
BS =8 dBi, UE =5 dBi

Noise Fig. BS=7dB, UE=10dB
Pathloss model Umi_Streetcanyon
Channel condition Line of sight (LoS)
Peak data rate 20 Gbps

Max UDP packet 10, 000

UDP packet size 1024 bytes

RBgen_congest = (N gen X RBgen) + RBgeneral (7)

where U.i; 1s the number of mission-critical
users, RB,; is the number of resource blocks
required for each mission-critical user, Nge, is the
number of mission-critical users, RBge, is the
number of resource blocks required for each
general user.

4 Simulation and Results

The simulation is conducted using the open-
source ns-O-RAN Open RAN simulation
platform, which enables large-scale 5G network
simulations by incorporating 3GPP-compliant
channel models and a detailed implementation of
the full 3GPP RAN protocol stack within the ns-
3 framework, augmented with an O-RAN-
compliant E2 interface [9].

4.1 Simulation Setup

Figure 2 illustrates a simulation scenario of an
urban environment with two gNBs positioned at
the height of 25 meters and six user equipment’s
(UEs), each at the height of 1.5 meters, moving
randomly within a 1000 square meters Line-of-
sight (LOS) region at the speed ranging from 1
m/s to 9 m/s. The scenario is designed by the
Dense Urban-eMBB test environment as
specified in ITU-R M.2412 [10] and is illustrated
in Table 2, which defines configuration
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Figure 2. Simulation Scenario

parameters for this simulation. Additionally, the
base station dynamically detects and manages
HO based on an adaptive signal-to-noise ratio
(SNR) threshold, initiating the process when the
SNR drops below -5 dB. Finally, the experiment
is conducted through a simulation spanning a
total duration of 120 seconds.

4.2 Performance Metrics

To evaluate the impact of mmWave
communications within the O-RAN framework,
this study investigates key QoS metrics,
including throughput, latency, and signal-to-
interference-plus-noise ratio (SINR).

e Throughput refers to the rate at which
information is correctly delivered and
received via a connection in a period. It can
usually be measured in megabits per second
(Mbps), depending on the manner and extent
to which the network is utilized. Throughput
is the performance seen by end users and
applications, and hence is one of the most
important metrics of end-to-end network
quality of service and efficiency. Throughput
can be affected by numerous factors along the
transmission path. They are channel
conditions, i.e., signal strength, noise levels,
and interference from other users or proximate
cells, which will degrade signal quality and
affect successful data transfer. Such other
factors as packet loss, i.e., packet loss due to
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congestion or transmission, and
retransmissions, bandwidth-consuming, and
delay, thus reducing the effective throughput.

Latency also known as delay, is the time it
takes for a packet of data to travel from the
source (e.g., remote host) to reach the
destination (e.g., mobile users), typically
measured in milliseconds. Mean delay per
user device is an indicative measure and can
be used to quantify network performance.

Signal-to-interference-plus-noise-ratio
(SINR) is a performance metric used to
evaluate the quality of a wireless
communication link. The higher the SINR, the
clearer, better, and more dependable the signal
will be, and therefore, the increased data rate
and decreased error rates are obtained. In
contrast, unfavorable channel conditions
signaled by low SINR can cause packet losses,
retransmissions, low data rates, or even trigger
handovers.

4.3 Results

Figure 3 presents the throughput performance of
all six UEs under the simulated mmWave
communications in a 5G O-RAN scenario. The
mean throughput, measured in megabits per
second (Mbps), is plotted against the individual
UEs. The results show that UE 4 and UE 6
achieved the highest throughput, receiving
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packets from the remote host at 16.77 Mbps. UE
1 followed closely with a throughput of 16.76
Mbps. UE 2 and UE 3 recorded a slightly
reduced throughput of 16.75 Mbps, while UE 5
experienced the lowest throughput at 16.73
Mbps, potentially attributable to link instability,
network congestion, or channel coding.

Figure 4 illustrates the end-to-end delay
comparison across all UEs. The mean delay,
expressed in milliseconds (ms), reveals that UE
2 experienced the lowest delay at 13.70 ms, with
UE 3 and UE 4 closely trailing at 13.80 ms and
13.73 ms, respectively. UE 1 displayed a
marginally higher delay of 13.92 ms, while UE 5
recorded a delay of 13.99 ms. UE 6 exhibited the
highest mean delay at 14.17 ms, suggesting
momentary congestion or less favourable
channel conditions during the transmission
interval.

Figure 5 indicates the SINR for all UEs over a
120-second simulation period, where values are
sampled at 1-second intervals. UE 1 recorded the
highest average SINR at 12.61 dB, but its SINR
pattern revealed pronounced fluctuations
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between 1 dB and 27 dB, particularly during the
final 40 seconds, suggesting transient
degradation likely driven by mobility-induced
channel variation or degraded propagation
conditions. UE 3 followed closely with an
average SINR of 11.99 dB with values
oscillating between 0 dB to 31 dB and showed a
relatively smoother signal trajectory, with
intermittent enhancements possibly reflecting
the near distance between the base station and
the UE, favorable link reestablishment or beam
alignment following mobility events. UE 4, with
an average of 8.66 dB, exhibited dense
oscillations throughout the simulation from -2
dB to 27 dB, maintaining a consistent but
moderately turbulent channel quality, which may
indicate frequent transitions between coverage
zones due to user mobility. In contrast, UE 2
displayed a lower average SINR of 5.55 dB and
experienced persistent dips and variations from -
9 dB to 27 dB, suggesting it encountered

degraded  coverage  areas, unfavorable
positioning, ineffective beamforming, or
suboptimal handover performance. UE 6

averaged 6.27 dB and demonstrated a more
gradual decline in SINR over time, punctuated
by brief recoveries with the highest SINR value
of 15 dB, indicative of partial adaptation to the
dynamic environment. Radio resource utilization
and favorable signal conditions. UE 5 registered
the lowest average SINR performance at 4.40
dB, characterized by severe and frequent signal
degradation from -4 dB to 26 dB, which maybe
attributed to unfavorable positioning, ineffective
beamforming, or repeated handover failures.
The overall performance of the simulated
scenario reveals the measurements of QoS
metrics mmWave communications within the
5G O-RAN, including throughput, latency, and
signal quality. UEs located closer to their serving
gNBs or in the beamforming path demonstrated
minimal delay, underscoring the advantages of
stable LOS conditions and reduced handover
frequency. In contrast, UEs that experience
lower SINR profiles experienced noticeable
performance degradation. Notably, some UEs
with moderate SINR values performed better in
latency metrics than those with higher SINR,
indicating that radio link quality alone does not
dictate end-to-end performance. Instead,
transient factors such as handover interruptions,
resource scheduling delays, and varying channel
conditions also play a crucial role and
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significantly  affect the perceived user
experience.  These conditions suggest that
ensuring QoS in O-RAN environments requires
not only managing radio conditions but also
implementing adaptive resource allocation
strategies that respond dynamically to real-time
network behavior.

5 Conclusion

In this paper, a comprehensive analysis of end-
to-end QoS for mmWave communications in a
5G O-RAN system was conducted, with multiple
performance metrics under a dense urban
deployment scenario. The simulation results
reveal that factors such as handover frequency,
link stability, and scheduling delays also have a
substantial impact on overall performance,
reinforcing the need for real-time channel
adaptation and dynamic resource allocation to
maintain service continuity. Thus, the future
work will focus on developing a slice-aware
XApp operating within the near-real-time RAN
Intelligent Controller (Near-RT RIC), designed
to dynamically allocate resource blocks based on
the QoS requirements of different service types
and real-time traffic conditions. This approach
aims to enhance adaptability and resource
efficiency in the O-RAN networks.
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Abstract

Khmer Named Entity Recognition (NER) is a
sub-task in Khmer Natural Language Processing
(NLP) that extracts information to locate and
classify named entities in Khmer text into
predefined categories, such as names of persons,
organizations, and locations. As a low-
resource language, there is a lack of high-
quality datasets for Khmer NER. This study
addresses the lack of an NER dataset for the
Khmer language, particularly in the public health
domain. The Khmer Health Event Extraction
Dataset (KHEED) was introduced. It comprises
525 annotated articles (5,980 sentences) from
Khmer health news, covering eight entity
types: Disease, Pathogen, Location, Human
Count, Organization, Symptom, Medication, and
Date. To evaluate the performance of Khmer
NER on the proposed dataset, five Khmer-
compatible NLP models were selected, and from
the experimental results, XLM-RoBERTa Base
achieved the best performance with a moderate
Fl-score of 0.7646. The KHEED Dataset will
be publicly available and serve as the foundation
and benchmark for future Event Extraction (EE)
Datasets.

Keywords: Khmer NLP, Khmer NER, Event
Extraction, Health News Data, KHEED

1 Introduction

Cambodia faces two major health issues: non-
communicable diseases (NCDs), which cause
64% of deaths [1], and ongoing communicable
diseases, especially in rural areas [1]. Khmer-
language health news, provides important
real-time information on outbreaks and health
policies. However, this information is often
unstructured and hard to access due to challenges
in processing the Khmer language [2].

Named Entity Recognition (NER) is
the process of highlighting text spans of
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important information, which are known as
entities [3]. In the context of public health in
Cambodia, these entities are utilized to represent
diseases, pathogens, locations, human counts,
organizations, dates, and medications, which
are critical in monitoring health trends such as
disease outbreaks. Event Extraction (EE), on
the other hand, is a task of identifying event
types, triggers, and arguments. NER and EE
automation help accelerate the analysis of health
trends and summarize Khmer health news,
eliminating the need for time-consuming work
by human annotators [4]. Developing NER and
EE systems for the Khmer language presents
numerous challenges due to the language’s
complexity and the scarcity of resources,
including well-annotated corpora and pre-
trained models [5]. In addition, Khmer writing
does not use spaces like other languages, which
means that an accurate word tokenization tool is
required, as this is crucial in Natural Language
Processing (NLP) [6].
In this paper, the contributions are:

1. Introduction of a novel domain-specific
dataset: Creation of the Khmer Health
Event Extraction Dataset (KHEED),
comprising a 525-annotated corpus of
named entities from Khmer news articles
in public health.

2. Extension of general NER capabilities:
Provision of a domain-specific dataset
extending the general NER dataset for
familiar entities.

3. Baseline performance evaluation:
Evaluation of five existing Khmer-
compatible NLP models on the NER task
using the KHEED dataset.

4. Foundation for event extraction (EE): A
fundamental step toward supporting the
future creation of the EE dataset.



The paper is organized as follows. In Section
2, related work is presented, followed by the
preparation of the KHEED Dataset in Section 3.
Section 4 outlines the experiments of the selected
Khmer-compatible models on the KHEED. Last
but not least, a Discussion is provided in
Section 5 before the conclusion and future work
discussed in Section 6.

2 Related Work

This section reviews the previous work of
NER and EE in the health domain, including
existing datasets and models, as well as common
methodologies employed.

2.1 Existing NER and EE for English and
other Languages

Numerous datasets are published for English
and other widely spoken languages. They
are crucial for researchers to develop NLP
models for NER and EE tasks. CoNLL-2003
is a common gold standard NER dataset, a
shared task of annotations of news wire articles
with four familiar entities [7]. OntoNotes 5.0
is another well-known annotation of a large
multilingual corpus with 18 named entities [8].
More recently, MultiNERD was introduced
as a large silver standard NER dataset. This
dataset consists of a wide range of 10 languages,
including English, Chinese, and Dutch, covering
an extensive 15 NER categories, such as familiar
entities (e.g., Person, Location, Organization)
and less common entities (e.g., Biological
entities, Mythological entities) [9]. MultiNERD
addresses the work of manual annotation
by automatically detecting entities using a
combination of mBERT + BiLSTM + CRF and
benchmarking against gold standard datasets,
achieving high scores. For the EE task, the
2005 Automated Content Extraction (ACE) is a
standard collection of annotated entities, events,
and relations at the sentence level for English,
Chinese, and Arabic [10]. MAVEN, another
EE dataset, is a general domain event detection
dataset designed to expand upon previous EE
datasets, covering a wide range of 168 event
types and 118,732 event mentions, which is
significantly larger than the ACE dataset [11].
However, these general domain datasets are
not specialized in the health domain and lack
support for the Khmer language.

141

2.2 Previous Work in Health Event
Extraction

There are many ongoing efforts to support
health EE due to its applications in disease
monitoring. One of the key contributions in
2013 is the GENIA dataset, which is composed
of biomedical articles with annotations of
biomolecular entities and events [12]. In
recent times, the BAND dataset was introduced
to address the lack of publicly available
surveillance on health news in the English
Language [13]. This dataset comprises 1,508
samples sourced from news and emails. In
addition, it offered several evaluation tasks,
including NER, EE, and Question Answering
(QA), developed by epidemiology experts.
Similarly, the SPEED++ dataset, a multilingual
EE dataset comprising four languages collected
from social media, features seven event types
and 20 argument roles, aiming to provide early
warnings of health hazards [14]. While these
datasets are valuable for a standard health EE
dataset, they may not be suitable for the Khmer
news reporting style.

2.3 Existing Khmer NER and EE Resources

Publicly available resources for Khmer NER and
EE tasks are minimal [15]. Currently, Khmer
researchers are developing models and datasets
[16]. However, an elementary open-source
dataset was released to foster the development
of NER for the Khmer Language [17]. This
dataset provided labeling of the persons and
location entities in Khmer text for over 47,700
sentences.  In terms of Khmer-compatible
models, Transformer-based models were often
fine-tuned for downstream tasks. Models
like mBARTS50 [18] were experimented with
in Khmer NLP research and have achieved
moderate results [16]. Despite these advances,
datasets for various domains with complex
annotation depths are still necessary.

2.4 Standard Annotation Schema and Tools

Effective NER and EE rely on well-defined
annotation schemas and tools. A standard
scheme is the BIO (Beginning, Inside, Outside)
tagging scheme, the entities are broken down into
tokens or sub-words, the first token is labeled as
’B-’ and the consequence tokens are labeled as
’[-* while tokens that are not part of an entity are
labeled as O [19]. An extension to this scheme



is the BIOES (Beginning, Inside, Outside, End,
Single) tagging scheme, where similar principles
are applied, but the ending token is labeled as
’E-’ and single-token entities are labeled as ’S-
’ [19]. For event extraction, the scheme includes
an event type supplement with event triggers and
event arguments.

Various tools are available to support
annotation tasks. A popular open-source
labeling tool is Label Studio, a customizable
interface for manual annotation workflow [20].
Another well-known annotation tool is Docanno,
which provides support for text classification
tasks and other tasks, such as sequence labeling
and sequence-to-sequence tasks [21]. In
addition, Prodigy is a modern annotation tool
that enables the efficient development of Al
systems [22].

2.5 Standard Benchmark and Evaluation
Metrics

Evaluation of NER and EE can be done at three
different levels. A standard evaluation for NER
is the entity-level evaluation, which involves the
correct and exact matching of predicted entities
against their proper tags. The metrics used at this
level are Precision, Recall, and F1-score [23].
Precision measures the percentage of correct
predictions among all predicted entities. Recall
measures the proportion of correct predictions
among all actual entities. Fl-score the the
harmonic mean of the two metrics. A more
precise evaluation is the event-level or tuple-
level evaluation, which assesses the entire event
extraction structure, including the event type,
triggers, and argument roles, against a manually
annotated gold standard dataset [24]. The
metrics used at this level are more complex
and can vary depending on their real-world
application. The most advanced level is the
document-level event evaluation, where models
at this level learn the context within an entire
document rather than just sentences [25].

3 KHEED Dataset

This section describes in detail the creation of the
KHEED dataset.

3.1 Data Collection

We collected 28,057 health news articles
from 2020 to 2025 from nine Khmer news
outlets: VOA Khmer, RFA Khmer, Fresh
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News, Camboja, Khmer Times, Kampuchea
Thmey Daily, DAP News, Cambodia Express
News, and Khmer Breaking News (Table 1).
Articles were scraped and thoroughly cleaned
by removing HTML tags, after which they were
segmented into sentences.

Table 1. Data Collection Summary

Source Articles
VOA Khmer 1,120
RFA Khmer 1,907
Fresh News 15,018
Camboja 59
Khmer Times 106
Kampuchea Thmey Daily 1,657
DAP News 3,803
Cambodia Express News 1,775
Khmer Breaking News 2,612
Total 28,057

3.2 Annotation Schema

We annotate eight entity types: Disease,
Pathogen, Location, HumanCount,
Organization, Symptom, Medication, and
Date. Table 2 provides names and examples

for each type. We use these canonical labels
throughout the paper and dataset.

These entities capture the essential details in
a health news report. The distribution shows
that Organization, Disease, and Location are the
most frequent entities in the dataset, accounting
for 73.4% of all entities. Date, HumanCount,
Pathogen, Symptom, and Medication are less
common; this creates an imbalance in the
dataset, which could potentially reduce model
performance. Figure 1 shows the distributions of
each entity type.

3.3 Annotation Process

To improve the efficiency of manual annotation
as a single annotator, a pre-annotation Python
script was developed to assist in capturing
entities in the articles. First, word segmentation
was applied using the Khmer-NLTK library [26]
in Python. Next, the script utilizes a predefined
dictionary lookup, prefixes and suffixes with
subsequent tokens, and regular expressions to
automatically annotate entities.  These pre-
annotations are then imported into Label Studio
for manual verification and correction, while also



Table 2. Named Entity Types and Examples

Entity Examples

DIS  tifiiHiies (AIDS)

PAT  Jjeuginm (Coronavirus)

SYM  fan (Cough)

MED  gin#§ujS6 (Antibiotic)

HUM  mos1a (30 people)

DAT ig§ot feunn §IWOWE (January 15, 2025)
LOC £ ANAGIY (Kampong Cham Province)
ORG  w8ingjmeita (Calmette Hospital)

3500

3000

2500

2000

Count

1500

1000

a1
=3
[}

Entity Type

Figure 1. Distribution of Entity Types

annotating additional entities. Finally, verified
annotations are exported as JSON, structured
with text, entity spans, and labels.

Several challenges were encountered during
annotation, including ambiguous entities, where
organization names could be either specific
names or general categories (e.g., “royal
government”). Another challenge was the dual-
category entities, which are entities that could
mean different things depending on the context
(e.g., ’school” as an institution vs. physical
location).

3.4 Data Processing

During processing, sentences containing fewer
than five tokens were removed to focus on
informative sentences, resulting in a final dataset
of 5,980 sentences. The annotated data were
then BIO tagged using KhmerNLTK [26] for
tokenization and stored in JSON format. The
data was then split into a ratio of 80:10:10
for training, wvalidation, and testing, using
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random sampling to reduce bias and improve
generalization.

4 Experiments

This section outlines the fine-tuning and
evaluation of five Khmer-compatible NLP
models on the KHEED dataset.

4.1 Model Selection

The models for evaluation were chosen based on
their multilingual capabilities and pre-training
in the Khmer language: XLM-RoBERTa-
Khmer-Small, BERT-Khmer-Small-Uncased,
PrahokBART-Base, XLM-RoBERTa-Base,
and BiLSTM-CRF. Table 3 summarizes the
specifications in each model.

4.2 Experimental Setup

The models were trained on a server equipped
with an NVIDIA GeForce RTX 4070 Ti SUPER
GPU and 16GB of memory. Hyperparameters
were tuned on the validation set, with a fixed
seed (42) for reproducibility. Early stopping
was implemented to prevent the model from
overfitting, halting training when the validation
loss stopped improving. The best model was
selected based on validation loss. Table 4
presents the hyperparameter settings for each
model.

4.3 Model Performance

The evaluation was performed at the entity level,
following standard NER evaluation metrics, as
calculated using the formulas below.

* Precision: The ratio of correctly predicted
positive tokens to the total predicted



Dictionary
Lookup

Prefix and
Suffixes

Label Studio Save as
Review JSON File

Word
Segmentation

Regex
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Figure 2. Annotation Process Flowchart

Table 3. Model Architecture Specifications

Model Type Architecture Parameters
XLM-RoBERTa-Khmer-Small  Encoder Transformer 49M
BERT-Khmer-Small-Uncased Encoder Transformer 29.1M
PrahokBART-Base Enc-Dec Transformer 62M
XLM-RoBERTa-Base Encoder Transformer 125M
BiLSTM-CRF Sequential LSTM+CRF N/A

positive tokens, calculated as:

on Khmer text. BERT-Khmer Small follows

closely with a 0.7048 Fl-score, showing that

P = _rr (1) small pre-trained models are also effective.
TP+ FP The BiLSTM-CRF model significantly
underperformed compared to transformer-

* Recall: The ratio of correctly predicted
positive tokens to all actual positive tokens,
calculated as:

TP

R=Fp 1 FN

2

* F1-Score: The harmonic mean of Precision
and Recall, providing a balanced measure of
performance:

2x (P xR)

F1=
P+ R

3)

Table 5 present the overall performance of
each model.

XLM-RoBERTa Base achieves the highest F1
Score of 0.7646, demonstrating its effectiveness
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based models. Table 6 shows the scores of each
model by entity type.

The results reveal a moderate performance
in Date, HumanCount, Location, Pathogen,
and Disease, benefiting from the patterns of
these entities in news articles. A slightly
lower performance for the Organization is due
to excessively long text spans, which are
challenging for the models to capture accurately.
For medication entities, the presence of pathogen
and disease names in the medication entities
confused the models. Regarding symptoms, the
models recognized them but failed to capture the
whole entities.



Table 4. Model Hyperparameter Configurations

Model Epochs Batch Size Learning Rate
XLM-RoBERTa-Khmer-Small 5 16 0.00002
BERT-Khmer-Small-Uncased 7 16 0.00002
XLM-RoBERTa-Base 8 16 0.00002
PrahokBART-Base 15 4 0.00002
BiLSTM-CRF 23 32 0.001
Table 5. Entity-Level Performance Results
Model Precision Recall F1-Score
XLM-RoBERTa Base 0.7006 0.8414  0.7646
BERT-Khmer Small 0.6575  0.7595  0.7048
XLM-RoBERTa Khmer-Small ~ 0.5943  0.7793  0.6744
PrahokBART Base 0.5732  0.6641  0.6153
BiLSTM-CRF 0.5147  0.5609  0.5368

5 Discussion

In this section, we will discuss about the current
state of Khmer compatible NLP models, their
limitation and capabilities.

5.1 Error Analysis

We defined four errors types, which include
false positives, where the model mistakenly
over predict entities, missed annotations could
also cause false positives, boundary errors
arising from segmentation issues, and type
confusions, including cases where hospitals were
tagged as Location instead of Organization
due to contextual cues like 181 (ar). While
tagging hospitals as Location in phrases like
islu8iins) (at the hospital) is contextually
valid, consistently tagging them as Organization
could improve model learning by reducing
ambiguity. Figure 3 compares the errors of the
predictions made by the models on the test set.

These errors reflect our challenges in
the Khmer NER task, such as overfitting,
inconsistent annotations, and opportunities for
schema improvement. The following examples
illustrate these issues:

« False Positive: The word ii# ijiﬁ (density)
in HMiAawISHAT (BARA) (density
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of new disease cases) was incorrectly
predicted as a Disease entity, but it is not
an entity. This error occurred due to its
proximity to the keyword i) (disease).

Missed Annotation: The word igtan
(January) in 181"{89ﬁn§°ns: (in January
this year) was predicted as a Date entity,
but the gold standard incorrectly labeled
it as a non-entity, indicating annotation
inconsistency.

Boundary Error (Under—Segmentatlon)
The entity fRufunnuius di  (heart
disease) was  partially tagged as
fifuiunny (vascular disease) as a
Disease entity, missing 1Usiid (heart). The
model failed to recognize the correct entity
boundary.

Boundary Error (Over-Segmentation):
The entity LUISﬁﬁG (Thailand) was
correctly predicted as a Location entity,
but the gold standard incorrectly annotated
only 16 (Thai) as Location, indicating an
annotator error.

« Missed Entity: The entity tifi§nisiuigy

(diabetes) in Fpwmignitii§ninuigy
(concern about diabetes) was no predlcted



Table 6. F1-Score Performance by Entity Type

Entity Type XLM-RoBERTa XLM-RoBERTa BERT-Khmer BiLSTM-CRF PrahokBART
Khmer-Small Base Small Base
Date 0.85 0.86 0.83 0.62 0.65
Disease 0.74 0.78 0.77 0.67 0.74
HumanCount 0.74 0.84 0.77 0.47 0.49
Location 0.73 0.83 0.77 0.56 0.66
Medication 0.30 0.46 0.00 0.08 0.12
Organization 0.53 0.69 0.59 0.43 0.50
Pathogen 0.63 0.73 0.65 0.55 0.78
Symptom 0.51 0.58 0.46 0.37 0.55

Count

I XLM-Roberta-Khmer-Small I BERT-Khmer-Small-Uncased I BiLSTM-CRF
m XLM-Roberta-Base Il PrahokBART

400

350

300

2501

200

150+

100+

50

Boundary Errors Type Errors

False Pos False Neg

Error Type

Figure 3. Model Performance by Error Type

as a Disease entity, due to segmentation
issues.

Type  Confusion: The  entity
HMPEMAUWsSUtRinGdl  (Narional
Authority for Combating AIDS) was
partially tagged as R (AIDS) as
a Disease entity instead of the correct
Organization entity. This reflects
confusion caused by disease terms within
organizational names.

Schema Ambiguity (Type Confusion):
The entity 18lu§ingjuignieanniG (ar
Kampong Thom Provincial Hospital) was
predicted as an Organization entity, but the
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gold standard labeled it as Location. This
confusion in the model indicates that it is
unable to distinguish between organization
and location in different contexts.

5.2 Current State

Our results demonstrate that the models are
at a practical state, but still require significant
advancement to compare with state-of-the-art
models for other languages.

6 Conclusion

In closing, we’ll summarize the contributions of
this study and look closer into the extensibility of
the dataset.



6.1 Limitations

Several limitations temper these results: severe
entity class imbalance (e.g., Medication and
Symptom constitute <5% of annotations)
significantly degrades performance on rare types
(F1 < 0.46 for Medication); single-annotator
labeling risks inconsistency, as evidenced
by boundary errors and type confusion (e.g.,
hospitals misclassified as Location); domain
restriction to formal news text limits applicability
to clinical records or conversational Khmer;
pre-annotation biases from dictionary and regex
heuristics may introduce systematic errors;
and moderate overall performance (best F1
Score ~0.76) remains far below English NER
benchmarks (~0.90+), highlighting the need for
larger, higher-quality training resources.

Future work should focus on multi-
annotator refinement, balanced sampling or
loss reweighting, cross-domain data integration,
advanced Khmer tokenization, and larger
pre-trained models to improve robustness,
generalization, and clinical utility. KHEED lays
a critical foundation for advancing health NLP
in Khmer.

6.2 Primary Contributions

This work presents two significant contributions
to Khmer NLP community. First, we introduced
the KHEED dataset, comprising of 525 articles
with eight entity type, this dataset provide
an automation to monitor health events from
Khmer heatlh news. Second, we have evaluated
the performance of Khmer compatible NLP
models accommodated by the analysis about
their limitations and key challenges for future
research. = We commit to publicly release
the dataset, models, and documentation to
facilitate similar research. The dataset, splits,
tokenization scripts, and training configurations
will be released under a CC BY-NC 4.0 license
on Github (https://github.com/CADT-LLM/
kheed.git), fostering reproducibility.

6.3 Future Research

Several promising research avenues emerge
from this work. Enhancing KHEED to a large-
scale health corpus that incorporates medical
literature, clinical notes, and patient forums
could improve the model’s understanding,
potentially eliminating boundary detection
and data imbalance. Building upon entity
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recognition, studying the relationship between
entities and the linking of events would
allow for a more sophisticated analysis of
health news. We plan to develop an EE
schema, annotating triggers and arguments for
events such as Outbreak (Disease, Location,
Date, HumanCount), which will enable more
sophisticated health trend analysis.  Entity
relation extraction and document-level event
modeling are also promising areas of research.
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